Ultraviolet radiation is historically interesting for ultrafast spectroscopy experiments. Absorption of a UV photon for example can generate a structural rearrangement in a DNA nucleobase, or a charge transfer in simple organic donor-acceptor systems that are candidates for a new class of solar cells. The lack of intense ultrashort UV laser pulses however has prevented the study of these systems at the early stages of the process, namely a few femtoseconds (fs) after excitation. Recently the generation of uJ-level, widely tuneable, ultrashort pulses in the UV spectral range has been demonstrated by resonant dispersive wave emission (RDW) in hollow capillary fibres (HCF). A HCF filled with noble gas is seeded with an IR pulse. Under particular conditions the IR pulse can undergo a higher-order soliton dynamics and emit a resonant radiation in the UV range. Although few cycle UV pulses were predicted by numerical simulations, no direct measurement of this time duration was performed so far. The first aim of this thesis is to present the direct measurement of the RDW temporal duration. At first RDW emission was reproduced, demonstrating a high tunability of the central wavelength of the spectra in the UV range with a bandwidth supporting 2 fs Fourier transformed limited time duration, and a pulse energy at microjoule level. The fibre was then coupled to an all-in-vacuum Self Diffraction Frequency Resolved Optical Gating setup to perform the temporal characterization of the pulses. The time duration of the UV pulses is demonstrated to be sub-3-fs in the whole tunable range. The second part of the thesis concerns the extension of this technique to the generation of two UV pulses with controlled relative delay in the same fibre. The idea was to seed the fibre with two delayed replicas of the IR pulse, both of them undergoing a soliton dynamics and RDW emission at the same time. Relying on the measurement of the spectral fringes in the RDW spectra, the generation of two UV pulses is demonstrated as well as the control of the UV pulses relative delay. These results open new possibilities in spectroscopic and interferometric applications.
La radiazione ultravioletta è interessante per esperimenti di spettroscopia ultraveloce. L'assorbimento di un fotone UV può generare un cambio di struttura in una base di DNA, o un trasferimento di carica in un sistema donore-accettore molecolare, candidato per nuove celle fotovoltaiche. La mancanza di impulsi laser UV ultrabrevi è stato un ostacolo per lo studio di queste dinamiche molecolari nei primi femtosecondi (fs) dopo l'eccitazione. Recentemente la generazione di impulsi ultrabrevi nell'UV con energia di uJ e con lunghezza d'onda regolabile è stata dimostrata con l'emissione di onda dispersiva risonante (ODR) in fibra ottica cava (FOC). Un impulso IR all'ingresso di una FOC riempita con gas nobile, in particolari condizioni può seguire una dinamica solitonica ed emettere una radiazione risonante nell'intervallo UV. Sebbene impulsi UV di pochi cicli ottici fossero previsti da simulazione numeriche, questi non erano mai stati misurati direttamente. Il primo scopo di questa tesi è presentare la misura diretta della durata temporale dell'ODR. Inizialmente l'ODR è stata riprodotta, dimostrando la sua emissione a diverse lunghezze d'onda, la cui banda spettrale supportava una minima durata di 2 fs ed energia a livello dei uJ. La fibra è stata quindi accoppiata a un apparato in vuoto SD-FROG per realizzare la caratterizzazione temporale degli impulsi. La durata degli impulsi UV è dimostrata essere minore di 3 fs a tutte le lunghezze d'onda di emissione. La seconda parte della tesi riguarda l'estensione di questa tecnica alla generazione nella stessa fibra di due impulsi UV con ritardo controllato. Due repliche dell'impulse IR sono state inviate all'ingresso della fibra, entrambi seguendo una dinamica solitonica ed emettendo una ODR. Le frange di interferenza negli spettri UV hanno dimostrato la generazione di due impulsi UV e il controllo del loro ritardo. Questi risultati aprono nuove possibilità in applicazioni spettroscopiche ed interferometriche.
Few cycle pulses from resonant dispersive wave emission in hollow capillary fibre for novel ultrafast applications in the deep ultraviolet
Cappenberg, Federico
2023/2024
Abstract
Ultraviolet radiation is historically interesting for ultrafast spectroscopy experiments. Absorption of a UV photon for example can generate a structural rearrangement in a DNA nucleobase, or a charge transfer in simple organic donor-acceptor systems that are candidates for a new class of solar cells. The lack of intense ultrashort UV laser pulses however has prevented the study of these systems at the early stages of the process, namely a few femtoseconds (fs) after excitation. Recently the generation of uJ-level, widely tuneable, ultrashort pulses in the UV spectral range has been demonstrated by resonant dispersive wave emission (RDW) in hollow capillary fibres (HCF). A HCF filled with noble gas is seeded with an IR pulse. Under particular conditions the IR pulse can undergo a higher-order soliton dynamics and emit a resonant radiation in the UV range. Although few cycle UV pulses were predicted by numerical simulations, no direct measurement of this time duration was performed so far. The first aim of this thesis is to present the direct measurement of the RDW temporal duration. At first RDW emission was reproduced, demonstrating a high tunability of the central wavelength of the spectra in the UV range with a bandwidth supporting 2 fs Fourier transformed limited time duration, and a pulse energy at microjoule level. The fibre was then coupled to an all-in-vacuum Self Diffraction Frequency Resolved Optical Gating setup to perform the temporal characterization of the pulses. The time duration of the UV pulses is demonstrated to be sub-3-fs in the whole tunable range. The second part of the thesis concerns the extension of this technique to the generation of two UV pulses with controlled relative delay in the same fibre. The idea was to seed the fibre with two delayed replicas of the IR pulse, both of them undergoing a soliton dynamics and RDW emission at the same time. Relying on the measurement of the spectral fringes in the RDW spectra, the generation of two UV pulses is demonstrated as well as the control of the UV pulses relative delay. These results open new possibilities in spectroscopic and interferometric applications.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_Federico_Cappenberg.pdf
accessibile in internet per tutti
Descrizione: Testo tesi
Dimensione
10.55 MB
Formato
Adobe PDF
|
10.55 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/228792