Concrete is one of the most widely used construction materials in the world due to its durability and versatility. However, concrete is not without its flaws, one of which is its susceptibility to cracking under various stresses and environmental conditions. Even in ultra-high-performance concrete (UHPC), which is known for its durability due to its watertightness and very high mechanical properties, cracks are unavoidable. This thesis investigates the effects of stimulated autogenous self-healing on the mechanical response of UHPC when subjected to cyclic loading, impact loading, freeze-thaw cycles, and high-temperature (200 °C & 400 °C) exposure. Additionally, this study explores the self-healing potential of UHPC with recycled aggregates obtained from parent UHPC and examines the effectiveness of low-cost macrocapsules. Self-healing progress was evaluated through surface crack closure and ultrasonic pulse velocity tests or natural frequency tests, along with other mechanical responses of the material, such as stiffness and energy absorption of UHPC slabs under impact tests. Surface crack closure was examined under different healing conditions, such as submersion, wet-dry cycling in water and NaCl solution, and 95% relative humidity, for durations of up to six months after crack formation. In conclusion, UHPC exhibits remarkable self-healing capabilities, achieving nearly 100% surface crack closure, 90%-100% recovery as measured by ultrasonic pulse velocity (UPV) and natural frequency, and even full mechanical recovery after exposure to 400°C. Moreover, some improvements in flexural fatigue life and impact resistance due to autogenous self-healing were observed, though further investigation is needed to assess their real importance and reliability. These findings underscore UHPC's potential for advanced structural applications that require high resilience and longevity, while also highlighting the need for further research to fully exploit its self-healing capabilities under extreme conditions.
Il calcestruzzo è uno dei materiali da costruzione più utilizzati al mondo grazie alla sua durata e versatilità. Tuttavia, il calcestruzzo non è privo di difetti, uno dei quali è la sua suscettibilità alla fessurazione in presenza di varie sollecitazioni e condizioni ambientali. Anche nel calcestruzzo ad altissime prestazioni (UHPC), noto per la sua durabilità grazie all'impermeabilità e alle elevatissime proprietà meccaniche, le fessure sono inevitabili. Questa tesi studia gli effetti dell'autorigenerazione autogena stimolata sulla risposta meccanica dell'UHPC quando viene sottoposto a carichi ciclici, a carichi d'urto, a cicli di gelo e disgelo e all'esposizione ad alte temperature (200 °C e 400 °C). Inoltre, questo studio esplora il potenziale di autorigenerazione dell'UHPC con aggregati riciclati ottenuti dall'UHPC di partenza ed esamina l'efficacia di macrocapsule a basso costo. Il progresso dell'autorigenerazione è stato valutato attraverso test di chiusura delle fessure superficiali e di velocità degli impulsi ultrasonici o di frequenza naturale, insieme ad altre risposte meccaniche del materiale, come la rigidità e l'assorbimento di energia delle lastre UHPC sottoposte a test di impatto. La chiusura delle fessure superficiali è stata esaminata in diverse condizioni di guarigione, come l'immersione, i cicli umido-asciutto in acqua e soluzione di NaCl e l'umidità relativa del 95%, per una durata fino a sei mesi dopo la formazione della fessura. In conclusione, l'UHPC mostra notevoli capacità di autorigenerazione, raggiungendo quasi il 100% di chiusura delle fessure superficiali, il 90%-100% di recupero misurato dalla velocità degli impulsi ultrasonici (UPV) e dalla frequenza naturale, e persino il pieno recupero meccanico dopo l'esposizione a 400°C. Inoltre, sono stati osservati alcuni miglioramenti nella vita a fatica a flessione e nella resistenza agli urti grazie all'autorigenerazione autogena, anche se sono necessarie ulteriori indagini per valutarne la reale importanza e affidabilità. Questi risultati sottolineano il potenziale dell'UHPC per le applicazioni strutturali avanzate che richiedono elevata resilienza e longevità, evidenziando al contempo la necessità di ulteriori ricerche per sfruttare appieno le sue capacità di autorigenerazione in condizioni estreme.
Performance of self-healing ultra high-performance cementitious composites under extremely aggressive scenarios: cyclic and impact loading and extreme temperatures
KANNIKACHALAM, NIRANJAN PRABHU
2023/2024
Abstract
Concrete is one of the most widely used construction materials in the world due to its durability and versatility. However, concrete is not without its flaws, one of which is its susceptibility to cracking under various stresses and environmental conditions. Even in ultra-high-performance concrete (UHPC), which is known for its durability due to its watertightness and very high mechanical properties, cracks are unavoidable. This thesis investigates the effects of stimulated autogenous self-healing on the mechanical response of UHPC when subjected to cyclic loading, impact loading, freeze-thaw cycles, and high-temperature (200 °C & 400 °C) exposure. Additionally, this study explores the self-healing potential of UHPC with recycled aggregates obtained from parent UHPC and examines the effectiveness of low-cost macrocapsules. Self-healing progress was evaluated through surface crack closure and ultrasonic pulse velocity tests or natural frequency tests, along with other mechanical responses of the material, such as stiffness and energy absorption of UHPC slabs under impact tests. Surface crack closure was examined under different healing conditions, such as submersion, wet-dry cycling in water and NaCl solution, and 95% relative humidity, for durations of up to six months after crack formation. In conclusion, UHPC exhibits remarkable self-healing capabilities, achieving nearly 100% surface crack closure, 90%-100% recovery as measured by ultrasonic pulse velocity (UPV) and natural frequency, and even full mechanical recovery after exposure to 400°C. Moreover, some improvements in flexural fatigue life and impact resistance due to autogenous self-healing were observed, though further investigation is needed to assess their real importance and reliability. These findings underscore UHPC's potential for advanced structural applications that require high resilience and longevity, while also highlighting the need for further research to fully exploit its self-healing capabilities under extreme conditions.File | Dimensione | Formato | |
---|---|---|---|
NIranjan PhD thesis Final 18-10-2024.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
96.61 MB
Formato
Adobe PDF
|
96.61 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/229152