With the development of seismic isolation devices, various types of isolators have been introduced, such as High Damping Rubber Bearing (HDRB), Lead Rubber Bearing (LRB), and Fiber Reinforced Elastomeric Isolator (FREI). These isolators, typically made of rubber material with high resistance to aging, for example a combination of EPDM and natural rubber (NR), are also characterized by low production costs. In parallel, steel dampers, although structurally non-load-bearing, offer a high energy dissipation capacity at low costs. X, J, and U steel dampers are frequently employed for this purpose, improving the energy absorption of structures. Traditional elastomeric isolators show limitations in their dissipation capacity, a limitation that has led to the design of hybrid systems combining various devices, such as shape memory alloys (SMA), ADAS dampers, and silt steel dampers, to optimize both isolation and dissipation. In this research, a novel cost-effective hybrid seismic isolation system integrating a conventional seismic isolator with S-shaped steel dampers (SSSDs) is proposed. The SSSD, consisting of U-shaped steel elements bolted in a configuration of four straight and two semi-circular segments, is placed between the foundation and the superstructure to increase the dissipation capacity. Finite element models of the isolation device with and without SSSD were modeled and analyzed under monotonic and cyclic loading, revealing that the novel hybrid device with SSSDs achieves dissipation capacities comparable to that of LRB isolators while offering improved isolation performance and reduced cost. Simulation results indicate that the addition of the SSSDs substantially increases the energy dissipation capacity of the system, while maintaining effective isolation properties and reducing structural responses under seismic loads. Experimental tests validated the numerical predictions, highlighting an optimal hysteretic behavior with a higher damping ratio and horizontal stiffness compared to conventional isolators. In conclusion, both numerical and experimental analyses confirm that the integration of S-shaped steel dampers in the seismic isolation system enhances mechanical performances. The adoption of this configuration represents an effective solution to improve both isolation and dissipation capacities, making the seismic isolator with SSSDs as a valid alternative to traditional isolators.
Con lo sviluppo di dispositivi di isolamento sismico, sono stati introdotti diversi tipi di isolatori, come quelli elastomerici ad alto smorzamento (HDRB), con nucleo in piombo (LRB) e rinforzati con fibre (FREI). Questi isolatori, spesso realizzati in gomma con alta resistenza all’invecchiamento, ad esempio una combinazione di EPDM e gomma naturale (NR), sono caratterizzati anche da bassi costi di produzione. In parallelo, gli smorzatori in acciaio, sebbene strutturalmente non portanti, offrono un’elevata capacità di dissipazione energetica a costi contenuti. Smorzatori di tipo X, J e U sono frequentemente impiegati per questo scopo, migliorando l’assorbimento energetico delle strutture. Gli isolatori elastomerici tradizionali mostrano limiti nella capacità di dissipazione, limitazione che ha spinto alla progettazione di sistemi ibridi che combinano vari dispositivi, come leghe a memoria di forma (SMA), smorzatori ADAS e smorzatori in acciaio, per ottimizzare sia isolamento che dissipazione. In questo studio, si propone un nuovo sistema di isolamento sismico ibrido a basso costo che integra uno smorzatore in acciaio a forma di S (SSSD) con un isolatore elastomerico tradizionale. L’SSSD, costituito da elementi in acciaio a forma di U imbullonati in una configurazione di quattro segmenti rettilinei e due semicircolari, viene posizionato tra fondazione e sovrastruttura per aumentare la capacità di dissipazione. Modelli numerici basati su elementi finiti del dispositivo elastomerico con e senza SSSD, sono stati realizzati e analizzati sotto carichi monotoni e ciclici, rivelando che il dispositivo ibrido con SSSD offre una dissipazione paragonabile a quella degli isolatori LRB ma con prestazioni di isolamento migliorate e costi ridotti. I risultati della simulazione mostrano che l'aggiunta dell'SSSD aumenta significativamente la capacità di dissipazione, mantenendo buone proprietà di isolamento e riducendo le risposte strutturali sotto carichi sismici. Le prove sperimentali hanno validato le previsioni numeriche, evidenziando un comportamento isteretico ottimale con un maggiore rapporto di smorzamento e rigidità orizzontale rispetto agli isolatori convenzionali. In conclusione, i risultati delle analisi numeriche e sperimentali confermano che l’integrazione di smorzatori a forma di S nel sistema di isolamento sismico permette di ottenere prestazioni meccaniche avanzate. L'adozione di questa configurazione rappresenta una soluzione efficace per migliorare sia l'isolamento che la dissipazione energetica, rendendo l'isolatore sismico con SSSD un'alternativa valida agli isolatori tradizionali.
Numerical and experimental research of a novel hybrid seismic system using seismic isolator coupled with s-shaped steel dampers
Guo, Kai
2024/2025
Abstract
With the development of seismic isolation devices, various types of isolators have been introduced, such as High Damping Rubber Bearing (HDRB), Lead Rubber Bearing (LRB), and Fiber Reinforced Elastomeric Isolator (FREI). These isolators, typically made of rubber material with high resistance to aging, for example a combination of EPDM and natural rubber (NR), are also characterized by low production costs. In parallel, steel dampers, although structurally non-load-bearing, offer a high energy dissipation capacity at low costs. X, J, and U steel dampers are frequently employed for this purpose, improving the energy absorption of structures. Traditional elastomeric isolators show limitations in their dissipation capacity, a limitation that has led to the design of hybrid systems combining various devices, such as shape memory alloys (SMA), ADAS dampers, and silt steel dampers, to optimize both isolation and dissipation. In this research, a novel cost-effective hybrid seismic isolation system integrating a conventional seismic isolator with S-shaped steel dampers (SSSDs) is proposed. The SSSD, consisting of U-shaped steel elements bolted in a configuration of four straight and two semi-circular segments, is placed between the foundation and the superstructure to increase the dissipation capacity. Finite element models of the isolation device with and without SSSD were modeled and analyzed under monotonic and cyclic loading, revealing that the novel hybrid device with SSSDs achieves dissipation capacities comparable to that of LRB isolators while offering improved isolation performance and reduced cost. Simulation results indicate that the addition of the SSSDs substantially increases the energy dissipation capacity of the system, while maintaining effective isolation properties and reducing structural responses under seismic loads. Experimental tests validated the numerical predictions, highlighting an optimal hysteretic behavior with a higher damping ratio and horizontal stiffness compared to conventional isolators. In conclusion, both numerical and experimental analyses confirm that the integration of S-shaped steel dampers in the seismic isolation system enhances mechanical performances. The adoption of this configuration represents an effective solution to improve both isolation and dissipation capacities, making the seismic isolator with SSSDs as a valid alternative to traditional isolators.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Guo.pdf
non accessibile
Descrizione: thesis text
Dimensione
12.06 MB
Formato
Adobe PDF
|
12.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/229676