In an evolving energy panorama increasingly dominated by renewable energy sources and extensive electrification of human activities, electric transmission systems face unprecedented challenges. These systems must now transmit electrical energy from highly unpredictable production sources, such as solar and wind power plants, while accommodating the increasing demand due to massive electrification efforts. Electric power systems are monitored and operated on a national scale by Transmission System Op-erators (TSOs), which are responsible for maintaining system operation security and preventing ma-jor issues and blackouts that could affect millions of people. Therefore, the reliability of the system, comprising both adequacy and security, is of paramount importance. Adequacy ensures that the system is well-designed to meet the electrical energy needs, while security involves the real-time assessment of system operation to ensure stability. Adequacy involves forecasting and scenario analysis to anticipate future energy needs, but security must be assessed continuously in real-time to maintain both static and dynamic stability. Currently, this real-time security assessment relies on engines processing the outputs of state estimators, which provide snapshots of the system state at regular intervals (typically every few seconds to minutes). However, this method introduces a time delay that can be problematic in the face of rapid changes induced by renewable energy sources, potentially jeopardizing system stability. The advent of Phasor Measurement Units (PMUs) has revolutionized the monitoring of power sys-tems, offering faster and more comprehensive measurements across the entire grid through Wide Area Measurement Systems (WAMS). These advancements open up new possibilities for the rapid assessment of power system stability. This thesis, developed in collaboration with CESI S.p.A., pro-poses an innovative algorithm designed to leverage WAMS data to detect the current system state and identify potential issues that could threaten system stability in a timely manner. By integrating PMU data, the proposed algorithm aims at enhancing the real-time monitoring capa-bilities of TSOs, enabling quicker and more accurate detection of stability issues. This approach not only addresses the limitations of traditional state estimation methods but also provides a robust solution to the dynamic challenges posed by renewable energy integration and increased electrifi-cation.
In un panorama energetico in evoluzione, sempre più dominato dalle fonti di energia rinnovabile e dall'elettrificazione estensiva delle attività umane, i sistemi di trasmissione elettrica devono affrontare sfide senza precedenti, dovendo trasmettere e distribuire energia elettrica da fonti di produzione altamente imprevedibili. I sistemi elettrici sono monitorati e gestiti a livello nazionale dai Transmission System Operators (TSO), che sono responsabili del mantenimento dell'operatività del sistema e della prevenzione di gravi problemi e blackout che potrebbero impattare milioni di persone. Pertanto, l'affidabilità del sistema, che comprende sia l'adeguatezza che la sicurezza, è di importanza fondamentale. L'adeguatezza garantisce che la rete elettrica sia ben progettata per soddisfare le esigenze energetiche, mentre la sicurezza implica la valutazione in tempo reale dell'operatività del sistema per garantire la stabilità. L'adeguatezza comporta la previsione e l'analisi degli scenari per anticipare le future esigenze energetiche, mentre la sicurezza deve essere valutata continuamente in tempo reale per mantenere sia la stabilità statica che dinamica. Attualmente, questa valutazione della sicurezza in tempo reale si basa su strumenti che elaborano gli output degli stimatori di stato, i quali forniscono istantanee dello stato del sistema a intervalli regolari (tipicamente da pochi secondi a minuti). Tuttavia, questo metodo introduce un ritardo temporale che può essere problematico di fronte ai rapidi cambiamenti indotti dalle fonti di energia rinnovabile, potenzialmente mettendo a rischio la stabilità del sistema. L'avvento delle Phasor Measurement Units (PMU) ha rivoluzionato il monitoraggio dei sistemi elettrici, offrendo misurazioni più rapide e complete su tutta la rete attraverso i Wide Area Measurement Systems (WAMS). Questi progressi aprono nuove possibilità per la valutazione rapida della stabilità dei sistemi elettrici. Questa tesi, sviluppata in collaborazione con CESI S.p.A., propone un algoritmo innovativo progettato per sfruttare i dati WAMS per rilevare lo stato attuale del sistema e identificare potenziali problemi che potrebbero minacciare la stabilità del sistema in modo più tempestivo. Integrando i dati delle PMU, l'algoritmo proposto mira a migliorare le capacità di monitoraggio in tempo reale dei TSO, consentendo una rilevazione più rapida e accurata delle problematiche di stabilità. Questo approccio non solo affronta le limitazioni dei metodi tradizionali di stima dello stato, ma fornisce anche una soluzione robusta alle sfide dinamiche poste dall'integrazione delle energie rinnovabili e dall'aumento dell'elettrificazione.
Global power system dynamic stability assessment through stability indicators
DANIELLI, ALESSIO
2023/2024
Abstract
In an evolving energy panorama increasingly dominated by renewable energy sources and extensive electrification of human activities, electric transmission systems face unprecedented challenges. These systems must now transmit electrical energy from highly unpredictable production sources, such as solar and wind power plants, while accommodating the increasing demand due to massive electrification efforts. Electric power systems are monitored and operated on a national scale by Transmission System Op-erators (TSOs), which are responsible for maintaining system operation security and preventing ma-jor issues and blackouts that could affect millions of people. Therefore, the reliability of the system, comprising both adequacy and security, is of paramount importance. Adequacy ensures that the system is well-designed to meet the electrical energy needs, while security involves the real-time assessment of system operation to ensure stability. Adequacy involves forecasting and scenario analysis to anticipate future energy needs, but security must be assessed continuously in real-time to maintain both static and dynamic stability. Currently, this real-time security assessment relies on engines processing the outputs of state estimators, which provide snapshots of the system state at regular intervals (typically every few seconds to minutes). However, this method introduces a time delay that can be problematic in the face of rapid changes induced by renewable energy sources, potentially jeopardizing system stability. The advent of Phasor Measurement Units (PMUs) has revolutionized the monitoring of power sys-tems, offering faster and more comprehensive measurements across the entire grid through Wide Area Measurement Systems (WAMS). These advancements open up new possibilities for the rapid assessment of power system stability. This thesis, developed in collaboration with CESI S.p.A., pro-poses an innovative algorithm designed to leverage WAMS data to detect the current system state and identify potential issues that could threaten system stability in a timely manner. By integrating PMU data, the proposed algorithm aims at enhancing the real-time monitoring capa-bilities of TSOs, enabling quicker and more accurate detection of stability issues. This approach not only addresses the limitations of traditional state estimation methods but also provides a robust solution to the dynamic challenges posed by renewable energy integration and increased electrifi-cation.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Danielli.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo tesi
Dimensione
8.94 MB
Formato
Adobe PDF
|
8.94 MB | Adobe PDF | Visualizza/Apri |
2024_12_Danielli_Executive_Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive summary of the Thesis
Dimensione
940.76 kB
Formato
Adobe PDF
|
940.76 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/229739