This thesis focuses on the aerodynamic analysis and performance assessment of the airframe and the isolated prop-rotor of an advanced tiltrotor aircraft under various flight conditions, using both analytical and numerical methodologies. A series of numerical simulations were performed with the support of a mid-fidelity code provided by Leonardo Helicopters along with analytical formulations obtained through semi-empirical formulas available in literature. The first objective was to evaluate the stability and control derivatives of the airframe part with also a focus on wing-tail, fuselage-tail and aileron-tail interactions. Also compressible effects and non-linear coupling phenomena between longitudinal and lateral-directional dynamics are assessed. The results obtained from these analysis are delivered to the FMEC thesis in order to develop a lateral-directional model of the ATA, in which flight dynamics equations are linearized around trim solutions computed through the delivered aerodynamic database. Subsequently, the aerodynamic performances of the isolated prop-rotor are analyzed through analytical and numerical methodologies that involves different geometry and wake modeling. The performances of the isolated prop-rotor are analyzed in hover, cruise and forward flight conditions. The numerical results are validated through grid sensitivity and time convergence analysis in order to ensure the robustness of the results. This work is to be placed in the context of the ThesisLab Project, a multidisciplinary and cooperative environment between Leonardo Helicopter Division and Politecnico di Milano. For the project, a group of qualified students has been selected to design different features of the Advanced Tiltrotor Aircraft, varying between several thematic areas such as aerodynamics, structures, dynamics, and control.
Questa tesi si concentra sull’analisi aerodinamica e sulla valutazione delle prestazioni dell’ATA e del rotore isolato in diverse condizioni di volo, utilizzando metodologie sia analitiche sia numeriche. Sono state condotte una serie di simulazioni numeriche con il supporto di un codice di media fedeltà fornito da Leonardo Elicotteri, integrato con formulazioni analitiche derivate da formule semi-empiriche presenti in letteratura. L’obiettivo principale è valutare le derivate di stabilità e controllo del velivolo, con un focus sulle interazioni tra ala-coda, fusoliera-coda e alettoni-coda. Sono stati inoltre valutati gli effetti di comprimibilità e i fenomeni di accoppiamento non lineare tra le dinamiche longitudinali e laterali-direzionali. I risultati di queste analisi sono stati forniti alla tesi di meccanica del volo per sviluppare un modello laterale-direzionale dell’ATA, in cui le equazioni di dinamica del volo vengono linearizzate attorno a soluzioni di equilibrio calcolate tramite il database aerodinamico fornito. Successivamente, le prestazioni aerodinamiche del rotore isolato sono state analizzate attraverso metodologie analitiche e numeriche che includono diversi modelli di geometria e di scia. Le prestazioni del rotore isolato sono state valutate in condizioni di volo di hover, crociera e volo avanzato. I risultati numerici sono stati validati tramite analisi di sensibilità della griglia e di convergenza temporale per garantirne la robustezza. Questo lavoro si inserisce nel contesto del progetto ThesisLab, un ambiente multidisci plinare e cooperativo tra Leonardo Helicopter Division e il Politecnico di Milano. Per il progetto, è stato selezionato un gruppo di studenti qualificati per progettare diverse caratteristiche dell’ATA, spaziando tra aree tematiche come aerodinamica, strutture, di namica e controllo.
Aerodynamic assessment of the airframe part and the prop-rotor of an Advanced Tiltrotor Aircraft
Lausdei, Gabriele
2023/2024
Abstract
This thesis focuses on the aerodynamic analysis and performance assessment of the airframe and the isolated prop-rotor of an advanced tiltrotor aircraft under various flight conditions, using both analytical and numerical methodologies. A series of numerical simulations were performed with the support of a mid-fidelity code provided by Leonardo Helicopters along with analytical formulations obtained through semi-empirical formulas available in literature. The first objective was to evaluate the stability and control derivatives of the airframe part with also a focus on wing-tail, fuselage-tail and aileron-tail interactions. Also compressible effects and non-linear coupling phenomena between longitudinal and lateral-directional dynamics are assessed. The results obtained from these analysis are delivered to the FMEC thesis in order to develop a lateral-directional model of the ATA, in which flight dynamics equations are linearized around trim solutions computed through the delivered aerodynamic database. Subsequently, the aerodynamic performances of the isolated prop-rotor are analyzed through analytical and numerical methodologies that involves different geometry and wake modeling. The performances of the isolated prop-rotor are analyzed in hover, cruise and forward flight conditions. The numerical results are validated through grid sensitivity and time convergence analysis in order to ensure the robustness of the results. This work is to be placed in the context of the ThesisLab Project, a multidisciplinary and cooperative environment between Leonardo Helicopter Division and Politecnico di Milano. For the project, a group of qualified students has been selected to design different features of the Advanced Tiltrotor Aircraft, varying between several thematic areas such as aerodynamics, structures, dynamics, and control.File | Dimensione | Formato | |
---|---|---|---|
Lausdei_Tesi_noDATA.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Elaborato di Tesi
Dimensione
7.77 MB
Formato
Adobe PDF
|
7.77 MB | Adobe PDF | Visualizza/Apri |
Executive_summary_Lausdei.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
899.09 kB
Formato
Adobe PDF
|
899.09 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/229753