This thesis examines the role of personalization in AI advertising disclosures, exploring whether tailored disclosure messages enhance consumer awareness of promotional content and improve persuasion knowledge ,their understanding of the persuasive intent behind advertising, and advertising recall. With the rise of AI in digital advertising, personalization has become a powerful tool for delivering more relevant advertising to individual users. However, the potential of personalized AI disclosures to improve transparency and consumer understanding remains unclear. Previous research suggests that well-designed disclosures, regardless of personalization, positively impact consumer awareness and skepticism. Thus, this study investigates if personalized disclosures outperform standard disclosures in increasing ad recognition, brand recall, and critical engagement with marketing content. Findings reveal no significant difference in the effectiveness of personalized disclosures compared to standard ones. Factors such as cognitive overload, consumer desensitization to online advertising, and the seamless integration of AI contents may all reduce the likelihood that personalized disclosures can capture and retain consumer attention. From a policy perspective, these results indicate that standard disclosures may suffice to fulfill transparency requirements without necessitating the additional complexity of personalization in regulatory guidelines. The study concludes that while personalization holds promise in targeted advertising, its application in advertising disclosures may not yield the expected benefits, highlighting the need for straightforward, well-placed, and clearly designed disclosures as a reliable means to ensure consumer awareness.
Questa tesi esamina il ruolo della personalizzazione nelle disclosure pubblicitarie riferite a contenuti generati da AI, analizzando se messaggi di disclosure personalizzati possano aumentare la consapevolezza dei consumatori riguardo ai contenuti promozionali e migliorare la persuasion knowledge, ovvero la loro comprensione dell’intento persuasivo dietro agli annunci, e l’advertsing recall. Con l’ascesa dell’AI nella pubblicità digitale, la personalizzazione è diventata uno strumento potente per offrire annunci più rilevanti agli utenti. Tuttavia, il potenziale delle disclosure personalizzate per contenuti AI nel migliorare la trasparenza e la comprensione del consumatore rimane incerto. Ricerche precedenti suggeriscono che le disclosure ben progettate, indipendentemente dalla personalizzazione, hanno un effetto positivo sulla consapevolezza e sullo scetticismo dei consumatori. Pertanto, questo studio indaga se le disclosure personalizzate superino quelle standard nell’aumentare il riconoscimento degli annunci, la memoria del brand e l’impegno critico con il contenuto di marketing. I risultati rivelano l’assenza di una differenza significativa nell’efficacia tra le disclosure personalizzate e quelle standard. Fattori come il sovraccarico cognitivo, la desensibilizzazione dei consumatori agli annunci online e l’integrazione fluida dei contenuti mirati dall’AI possono ridurre la probabilità che le disclosure personalizzate catturino e mantengano l’attenzione dei consumatori. Dal punto di vista delle policy, questi risultati indicano che le disclosure standard potrebbero essere sufficienti per soddisfare i requisiti di trasparenza senza la necessità di complicazioni aggiuntive derivanti dalla personalizzazione nelle linee guida normative. Lo studio conclude che, sebbene la personalizzazione abbia promesse nel targeting pubblicitario, la sua applicazione nelle disclosure pubblicitarie potrebbe non offrire i benefici attesi, evidenziando la necessità di disclosure semplici, ben posizionate e chiaramente progettate come metodo affidabile per garantire la consapevolezza del consumatore.
Decoding the saliency effect: cognitive and sensory dimensions of advertsing disclosure to Generative AI advertsing
PICCALUGA, MARTINA
2023/2024
Abstract
This thesis examines the role of personalization in AI advertising disclosures, exploring whether tailored disclosure messages enhance consumer awareness of promotional content and improve persuasion knowledge ,their understanding of the persuasive intent behind advertising, and advertising recall. With the rise of AI in digital advertising, personalization has become a powerful tool for delivering more relevant advertising to individual users. However, the potential of personalized AI disclosures to improve transparency and consumer understanding remains unclear. Previous research suggests that well-designed disclosures, regardless of personalization, positively impact consumer awareness and skepticism. Thus, this study investigates if personalized disclosures outperform standard disclosures in increasing ad recognition, brand recall, and critical engagement with marketing content. Findings reveal no significant difference in the effectiveness of personalized disclosures compared to standard ones. Factors such as cognitive overload, consumer desensitization to online advertising, and the seamless integration of AI contents may all reduce the likelihood that personalized disclosures can capture and retain consumer attention. From a policy perspective, these results indicate that standard disclosures may suffice to fulfill transparency requirements without necessitating the additional complexity of personalization in regulatory guidelines. The study concludes that while personalization holds promise in targeted advertising, its application in advertising disclosures may not yield the expected benefits, highlighting the need for straightforward, well-placed, and clearly designed disclosures as a reliable means to ensure consumer awareness.File | Dimensione | Formato | |
---|---|---|---|
EXECUTIVE_SUMMARY_PICCALUGA_ 10728603.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
872.75 kB
Formato
Adobe PDF
|
872.75 kB | Adobe PDF | Visualizza/Apri |
TESI_PICCALUGA_10728603.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
1.98 MB
Formato
Adobe PDF
|
1.98 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/229777