The HERMES mission consists of a constellation of six 3U CubeSats in Low Earth Orbit, divided into two projects: HERMES Technological Pathfinder (HERMES-TP) and HERMES Scientific Pathfinder (HERMES-SP). The mission aims to detect high-energy transients while minimizing costs and time-to-orbit. A critical aspect of the mission is its thermal control subsystem, which ensures that all components remain within proper temperature ranges, crucial for achieving high scientific returns. This thesis focuses on the correlation of the thermal model and orbital simulations conducted using the ESATAN software, which complies with ECSS documentation standards. The thermal model is correlated with test data from the Protoflight Model by adjusting thermal parameters, such as contact resistances, to ensure it accurately reflects the satellite behavior in accordance with ECSS standards. This work offers both a detailed methodology and a complete set of contact resistance values, which are valuable resources for the CubeSat community during the early stages of mission design. The CubeSat is planned for launch into a Sun-Synchronous Orbit (SSO) with two potential Local Times of Ascending Node (LTAN): 17 or 1030. Orbital simulations indicate that for LTAN17, the payload must remain obscured for at least 40 minutes, accounting for in-orbit maneuvers and eclipse duration, but this period should not exceed 50 minutes to ensure sufficient power generation from the solar arrays. During the rest of the orbit, when the payload is not obscured, the satellite maintains a YAW of 45 degrees and a ROLL of 30 degrees. In contrast, the LTAN1030 orbit is not promising, as it fails to meet both thermal and power generation requirements.
La missione HERMES consiste in una costellazione di sei CubeSat 3U in orbita terrestre bassa, suddivisa in due parti: HERMES Technological Pathfinder (HERMES-TP) e HERMES Scientific Pathfinder (HERMES-SP). La missione mira a rilevare transienti ad alta energia riducendo al minimo i costi e il tempo di permanenza in orbita. Un aspetto critico della missione è il suo sottosistema di controllo termico, che assicura che tutti i componenti rimangano all’interno di intervalli di temperatura appropriati, cruciali per ottenere elevati ritorni scientifici. Questa tesi si concentra sulla correlazione del modello termico e le simulazioni orbitali condotte con il software ESATAN, conforme agli standard di documentazione ECSS. Il modello termico viene correlato con i dati di test del Protoflight Model regolando i parametri termici, come le resistenze di contatto, per garantire che rispecchi accuratamente il comportamento del satellite in conformità con gli standard ECSS. Questo lavoro offre sia una metodologia dettagliata sia un insieme completo di valori di resistenza di contatto, entrambe risorse preziose per la comunità dei CubeSat durante le prime fasi di progettazione della missione. Il lancio del CubeSat è previsto in un’orbita sincrona con il Sole (SSO) con due potenziali tempi locali del nodo ascendente (LTAN): 17 o 1030. Le simulazioni orbitali indicano che per LTAN17, il payload deve rimanere oscurato per almeno 40 minuti, tenendo conto delle manovre in orbita e della durata dell’eclissi, ma questo periodo non dovrebbe superare i 50 minuti per garantire una sufficiente generazione di energia dai pannelli solari. Durante il resto dell’orbita, quando il payload non è oscurato, il satellite mantiene un assetto con YAW a 45 gradi e ROLL a 30 gradi. L’orbita con LTAN1030, invece, non è promettente, in quanto non riesce a soddisfare i requisiti termici e di generazione di energia.
HERMES CubeSat: thermal model correlation with TVAC test data and operational modes analysis
Marinelli, Stefano
2023/2024
Abstract
The HERMES mission consists of a constellation of six 3U CubeSats in Low Earth Orbit, divided into two projects: HERMES Technological Pathfinder (HERMES-TP) and HERMES Scientific Pathfinder (HERMES-SP). The mission aims to detect high-energy transients while minimizing costs and time-to-orbit. A critical aspect of the mission is its thermal control subsystem, which ensures that all components remain within proper temperature ranges, crucial for achieving high scientific returns. This thesis focuses on the correlation of the thermal model and orbital simulations conducted using the ESATAN software, which complies with ECSS documentation standards. The thermal model is correlated with test data from the Protoflight Model by adjusting thermal parameters, such as contact resistances, to ensure it accurately reflects the satellite behavior in accordance with ECSS standards. This work offers both a detailed methodology and a complete set of contact resistance values, which are valuable resources for the CubeSat community during the early stages of mission design. The CubeSat is planned for launch into a Sun-Synchronous Orbit (SSO) with two potential Local Times of Ascending Node (LTAN): 17 or 1030. Orbital simulations indicate that for LTAN17, the payload must remain obscured for at least 40 minutes, accounting for in-orbit maneuvers and eclipse duration, but this period should not exceed 50 minutes to ensure sufficient power generation from the solar arrays. During the rest of the orbit, when the payload is not obscured, the satellite maintains a YAW of 45 degrees and a ROLL of 30 degrees. In contrast, the LTAN1030 orbit is not promising, as it fails to meet both thermal and power generation requirements.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Marinelli.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
32.95 MB
Formato
Adobe PDF
|
32.95 MB | Adobe PDF | Visualizza/Apri |
2024_12_Marinelli_Executive_Summary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
4.93 MB
Formato
Adobe PDF
|
4.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/229794