Traditionally, coarse-grained materials were used as fill for land reclamation projects. As they have been locally depleted, sand has to be imported from neighboring countries. The additional importation costs have driven the industry to seek alternative fill materials. Every year, clay lumps are obtained from in-land constructions like deep basements for buildings, underground roads and subways excavations, as well as dredging for the maintenance of navigation channels and ports. A promising solution to cut down reclamation expenses, and at the same time to limit the disposal of what up to date has been regarded as ”unwanted sediments”, is to employ these large volumes of clay for reclaiming land. Even though this approach has already been implemented in the past twenty years, the viability of this material as reclamation fill is still an open question. To date, the models developed to study this engineering problem are largely based on the theory of one-dimensional consolidation of a double porosity material. The lumpy fill is essentially modelled as the superposition of two continua. The first continuum corresponds to the conventional soil element, denoted as intra-lump system, while the second one, called inter-lump system, comprises clay lumps and voids between them. The predictive capabilities of these models are quite limited, as they do not account for features like lump size, shape and original in-situ effective stress state, which have been shown to affect the performance of the lumpy fill. In this work, it has been developed a proposal for the term governing the water transfer between inter and intra-lump voids, based on the Mandel-Cryer’s theory for the consolidation of a soil sphere. The model is able to correctly predict the role played by the clay lumps’ size, showing a bimodal time-evolution of surface settlements, as expected from a double-porosity medium.
L'impatto delle opere delle infrastrutture costiere è un aspetto sempre più rilevante per la sostenibilità. Sempre più spesso, le operazioni di dragaggio e di scavo implicano la produzione di grandi volumi di terreno argilloso, considerati però inadatti al riuso e quindi destinati allo smaltimento, privilegiando l'uso di materiali granulari come materiale di riempimento e costruzione. Questo approccio alimenta un circolo vizioso di consumo di risorse e gestione inefficace dei materiali, che stanno contribuendo ad un consumo incontrollato del suolo. La classificazione dei terreni argillosi dragati come "inadatti" deriva infatti da una carenza di conoscenze scientifiche e tecniche sul loro possibile riutilizzo. Sebbene negli ultimi vent'anni l'utilizzo di blocchi di argilla come riempimento sia già stato studiato, la modellazione dei processi idro-meccanici legati all'evoluzione nel tempo delle loro proprietà idro-meccaniche rappresenta ancora una sfida. In letteratura la modellazione di questi materiali è generalmente affrontata attraverso l'introduzione di un mezzo poroso a 'doppia porosità', caratterizzato da un sistema di pori 'intra-blocchi', corrispondente a un elemento di volume convenzionale, e da un sistema di pori 'inter-blocchi', corrispondente ai vuoti presenti tra i blocchi stessi, ciascuno potenzialmente caratterizzato da un diverso potenziale idrico. Questo contributo si concentra sull'introduzione di una proposta per descrivere il trasferimento di massa d'acqua tra i vuoti 'inter-blocco' e il materiale argilloso costituente il blocco, basata sulla teoria sviluppata da Cryer per la consolidazione di una sfera di terreno. Rispetto agli approcci convenzionali presenti in letteratura, che trascurano aspetti come la dimensione, la forma e lo stato di sforzo efficace dei blocchi, il modello è in grado di prevedere correttamente il ruolo giocato dalla dimensione dei blocchi, all'aumento della quale cresce il tempo richiesto al termine della consolidazione.
A 1D numerical model of land reclamation with lumpy clay fill: a novel micro-macro approach
GRITTI, DAVIDE
2023/2024
Abstract
Traditionally, coarse-grained materials were used as fill for land reclamation projects. As they have been locally depleted, sand has to be imported from neighboring countries. The additional importation costs have driven the industry to seek alternative fill materials. Every year, clay lumps are obtained from in-land constructions like deep basements for buildings, underground roads and subways excavations, as well as dredging for the maintenance of navigation channels and ports. A promising solution to cut down reclamation expenses, and at the same time to limit the disposal of what up to date has been regarded as ”unwanted sediments”, is to employ these large volumes of clay for reclaiming land. Even though this approach has already been implemented in the past twenty years, the viability of this material as reclamation fill is still an open question. To date, the models developed to study this engineering problem are largely based on the theory of one-dimensional consolidation of a double porosity material. The lumpy fill is essentially modelled as the superposition of two continua. The first continuum corresponds to the conventional soil element, denoted as intra-lump system, while the second one, called inter-lump system, comprises clay lumps and voids between them. The predictive capabilities of these models are quite limited, as they do not account for features like lump size, shape and original in-situ effective stress state, which have been shown to affect the performance of the lumpy fill. In this work, it has been developed a proposal for the term governing the water transfer between inter and intra-lump voids, based on the Mandel-Cryer’s theory for the consolidation of a soil sphere. The model is able to correctly predict the role played by the clay lumps’ size, showing a bimodal time-evolution of surface settlements, as expected from a double-porosity medium.File | Dimensione | Formato | |
---|---|---|---|
A 1D Numerical Model for Land Reclamation with Lumpy Clay Fill.pdf
solo utenti autorizzati a partire dal 20/11/2027
Dimensione
16.3 MB
Formato
Adobe PDF
|
16.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/229994