Chronic diseases have the potential to affect any individual and require careful and responsible intervention, given that they can be fatal. In order to ensure optimal treatment outcomes, it is essential to adhere to the prescribed medication regimen as directed by the treating physician. Non-adherence to these prescriptions is regarded as a significant public health concern, as it is linked to an increased likelihood of rehospitalisation, elevated healthcare costs and a rise in mortality rate. Non-adherence can be of two types: intentional, when the patient makes an autonomous decision to alter or terminate their treatment; and unintentional, when it is caused by forgetfulness or misunderstandings. A variety of solutions have been proposed to measure levels of adherence and to compensate for instances of unintentional non-adherence. These include the use of reminders on blister packs and the deployment of mobile health technologies, such as using smartphones, which are widespread today. The objective of this thesis was to develop a smartwatch application for WearOS with the aim of monitoring and improving medication adherence. This decision was made on the basis of the observed growth in the sale of smartwatches, which are equipped with a multitude of sensors and the capacity to run sophisticated applications. The application enables sending notifications to patients, prompting them to take their medication and providing them with insights into their medication adherence levels. To encourage patients to enhance their adherence, motivational messages and health tips are delivered. Furthermore, the smartwatch is equipped with sensors that are utilised to estimate the patient's stress levels and to establish a comparison between these levels before and after the receipt of the notification. This enables the investigation of whether the prompting of medication adherence was a source of stress for the patient. The application was developed in Kotlin and interfaces with InTakeCare, a platform for monitoring adherence, of which this project is a module. Interaction takes place through the use of API calls, storing drug information in an encrypted local Room database and synchronising updates with the server. The app was tested by four volunteers, who positively evaluated its functionality and usability. Some limitations were identified, including the inability to access certain sensors and the need for further testing with a more diverse group. Additionally, the feedback from the testers offered insights for future enhancements.
Le malattie croniche possono colpire chiunque e richiedono un intervento attento e responsabile, perché possono essere fatali. Per gestirle correttamente, è necessario assumere i farmaci prescritti dal medico. La mancata aderenza a queste prescrizioni è considerata un problema di salute pubblica, in quanto è associata a un aumento dei casi di re-ospedalizzazione, dei costi di assistenza e della mortalità. La non aderenza può essere di due tipi: intenzionale, quando il paziente decide autonomamente di cambiare o interrompere il trattamento; e non intenzionale, quando è dovuta alla dimenticanza o alla mancata comprensione delle modalità di assunzione di un farmaco. Sono state proposte diverse soluzioni per misurare l'aderenza e compensare la non aderenza involontaria, come i promemoria su blister o l'uso di sistemi di mobile health, impiegando ad esempio gli smartphone per ricevere promemoria. L'obiettivo di questa tesi è stato quello di sviluppare un'applicazione per smartwatch con sistema operativo WearOS allo scopo di monitorare e migliorare l'aderenza ai farmaci. Questa decisione è stata presa sulla base della crescita osservata nella vendita di smartwatch, che sono dotati di una moltitudine di sensori e della capacità di eseguire applicazioni sofisticate. L'applicazione consente di inviare notifiche ai pazienti, invitandoli a prendere le medicine e fornendo loro informazioni sui livelli di aderenza ai farmaci. L’app incoraggia i pazienti a migliorare la loro aderenza attraverso l'invio di messaggi motivazionali e consigli sulla salute. Inoltre, lo smartwatch è dotato di sensori che vengono utilizzati per accertare i livelli di stress del paziente e per stabilire un confronto tra questi livelli prima e dopo la ricezione della notifica. Ciò consente di verificare se la richiesta di aderenza ai farmaci sia stata una fonte di stress per il paziente. L'applicazione è stata sviluppata in Kotlin e si interfaccia con InTakeCare, una piattaforma per il monitoraggio dell'aderenza, di cui questo progetto costituisce un modulo. L'interazione avviene attraverso l'uso di chiamate API, salvando le informazioni sui medicinali in un database locale Room criptato e sincronizzando gli aggiornamenti con il server. L'applicazione è stata testata da quattro volontari, che hanno valutato positivamente la funzionalità e l'usabilità. Sono stati individuati alcuni limiti, tra cui l'impossibilità di accedere ad alcuni sensori e la necessità di ulteriori test con un gruppo più eterogeneo. Inoltre, il feedback dei tester ha offerto spunti per futuri miglioramenti.
Development and testing of a Smartwatch App to monitor medication adherence in chronic patients
Di Diego, Christian
2023/2024
Abstract
Chronic diseases have the potential to affect any individual and require careful and responsible intervention, given that they can be fatal. In order to ensure optimal treatment outcomes, it is essential to adhere to the prescribed medication regimen as directed by the treating physician. Non-adherence to these prescriptions is regarded as a significant public health concern, as it is linked to an increased likelihood of rehospitalisation, elevated healthcare costs and a rise in mortality rate. Non-adherence can be of two types: intentional, when the patient makes an autonomous decision to alter or terminate their treatment; and unintentional, when it is caused by forgetfulness or misunderstandings. A variety of solutions have been proposed to measure levels of adherence and to compensate for instances of unintentional non-adherence. These include the use of reminders on blister packs and the deployment of mobile health technologies, such as using smartphones, which are widespread today. The objective of this thesis was to develop a smartwatch application for WearOS with the aim of monitoring and improving medication adherence. This decision was made on the basis of the observed growth in the sale of smartwatches, which are equipped with a multitude of sensors and the capacity to run sophisticated applications. The application enables sending notifications to patients, prompting them to take their medication and providing them with insights into their medication adherence levels. To encourage patients to enhance their adherence, motivational messages and health tips are delivered. Furthermore, the smartwatch is equipped with sensors that are utilised to estimate the patient's stress levels and to establish a comparison between these levels before and after the receipt of the notification. This enables the investigation of whether the prompting of medication adherence was a source of stress for the patient. The application was developed in Kotlin and interfaces with InTakeCare, a platform for monitoring adherence, of which this project is a module. Interaction takes place through the use of API calls, storing drug information in an encrypted local Room database and synchronising updates with the server. The app was tested by four volunteers, who positively evaluated its functionality and usability. Some limitations were identified, including the inability to access certain sensors and the need for further testing with a more diverse group. Additionally, the feedback from the testers offered insights for future enhancements.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Di_Diego.pdf
solo utenti autorizzati a partire dal 18/11/2025
Dimensione
2.19 MB
Formato
Adobe PDF
|
2.19 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary_Di_Diego.pdf
solo utenti autorizzati a partire dal 18/11/2025
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230011