This thesis presents a detailed investigation of the thermal energy system design and integration for the RoofKIT project, which was winner of the Solar Decathlon Europe competition. The study focuses on optimizing the interaction between photovoltaic-thermal (PVT) collectors, a ground-source heat pump (GSHP), and seasonal energy storage using a geothermal system. Through simulations conducted in the TRNSYS environment. Three operational strategies about the different interactions between energy systems were evaluated to maximize energy efficiency, thermal comfort, reduce CO2 emissions and achieve near carbon-neutral performance. Key elements of the system, such as the control strategies for heat pumps, energy storage management, and the integration of solar energy, are explored in depth. Results indicate that the optimal operational strategy leverages PVT collectors for both heat generation and storage in the geothermal system, ensuring stable performance across seasonal variations. The RoofKIT building achieves impressive energy self-sufficiency, with renewable energy sources providing up to 95% of its yearly electricity needs, highlighting the potential of integrated renewable systems in supporting sustainable architectural practices. These findings highlight the feasibility of advanced energy systems in modern construction projects, offering insights into sustainable building practices and the potential for future applications in urban environments.
Questa tesi presenta un’indagine dettagliata sulla progettazione e l’integrazione del sistema energetico termico per il progetto RoofKIT, vincitore dalla competizione Solar Decathlon Europe. Lo studio si concentra sull’ottimizzazione dell’interazione tra collettori fotovoltaico-termici, una pompa di calore a risorsa geotermica e lo stoccaggio stagionale di calore tramite un sistema geotermico. Attraverso simulazioni condotte attraverso il programma TRNSYS. Sono state valutate tre strategie operative riguardanti le diverse interazioni tra i sistemi energetici per massimizzare l’efficienza energetica, il comfort termico, ridurre le emissioni di CO2 e raggiungere una performance quasi a emissioni zero. Gli elementi chiave del sistema, come le strategie di controllo delle pompe di calore, la gestione dello stoccaggio dell’energia e l’integrazione dell’energia solare, vengono esplorati in profondità. I risultati indicano che la strategia operativa ottimale sfrutta i collettori PVT sia per la generazione di calore che per l’accumulo nel sistema geotermico, garantendo una prestazione stabile alle variazioni stagionali. L’edificio RoofKIT raggiunge un’elevata autosufficienza energetica, con fonti rinnovabili che forniscono fino al 95% del fabbisogno elettrico annuale, evidenziando il potenziale dei sistemi rinnovabili integrati nel supportare pratiche architettoniche sostenibili. Questi risultati sottolineano la fattibilità dei sistemi energetici avanzati nei progetti di costruzione moderna, offrendo spunti sulle pratiche edilizie sostenibili e sul potenziale per applicazioni future in ambienti urbani.
Modeling and optimizing the integration of PVT collector, geothermal system and heat pump in a demonstration building
Pinto, Matteo
2023/2024
Abstract
This thesis presents a detailed investigation of the thermal energy system design and integration for the RoofKIT project, which was winner of the Solar Decathlon Europe competition. The study focuses on optimizing the interaction between photovoltaic-thermal (PVT) collectors, a ground-source heat pump (GSHP), and seasonal energy storage using a geothermal system. Through simulations conducted in the TRNSYS environment. Three operational strategies about the different interactions between energy systems were evaluated to maximize energy efficiency, thermal comfort, reduce CO2 emissions and achieve near carbon-neutral performance. Key elements of the system, such as the control strategies for heat pumps, energy storage management, and the integration of solar energy, are explored in depth. Results indicate that the optimal operational strategy leverages PVT collectors for both heat generation and storage in the geothermal system, ensuring stable performance across seasonal variations. The RoofKIT building achieves impressive energy self-sufficiency, with renewable energy sources providing up to 95% of its yearly electricity needs, highlighting the potential of integrated renewable systems in supporting sustainable architectural practices. These findings highlight the feasibility of advanced energy systems in modern construction projects, offering insights into sustainable building practices and the potential for future applications in urban environments.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Matteo_Pinto.pdf
accessibile in internet per tutti a partire dal 12/11/2025
Dimensione
11.22 MB
Formato
Adobe PDF
|
11.22 MB | Adobe PDF | Visualizza/Apri |
executive_summary_Matteo_Pinto.pdf
non accessibile
Dimensione
535.24 kB
Formato
Adobe PDF
|
535.24 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230061