This thesis work is devoted to the development and testing of a Wheel Slide Protection (WSP) system to be implemented on freight trains. The aim of this device is to avoid wheel locking and reduce the occurrence of wheel sliding in case, during braking, the wheel-rail contact conditions feature a reduced adhesion due to the presence of water, leaves, grease or other contaminants on the rail surface. The main advantage of such kind of system is the reduction of damages on the wheel tread and on the rail and the consequent reduction of maintenance costs. Since the system has to be implemented on a freight wagon, the design choices are oriented to the maximum simplicity concerning both the hardware and the software, respectively the components to be installed on the vehicle and the control logic. The control logic development, in particular, is aimed not only to the reduction of wheel sliding phenomena but also to the reduction of stopping distance and air consumption. The proposed control logic is tested on a Hardware-in-the-Loop test bench, where the Wheel Slide Protection system is embedded in a real-time numerical simulation representing the vehicle dynamics and part of the braking system: the measurements performed on the test bench are used to compute in real time the braking force and its impact on the vehicle dynamics; at the same time, the vehicle dynamics parameters are used to determine the activations of the system on the test bench. The numerical model of the WSP system is validated on the experimental results in order to ensure that the model represents accurately the real components of the system. Finally, the system is tested under different operating conditions, demonstrating its capability to avoid wheel locking, to reduce the stopping distances by more than 30% limiting the wheel sliding and at the same time to ensure a reduced air consumption. The robustness of the logic is eventually tested in order to evaluate if the system is able to cope with particularly critical conditions, individuating its limits and proposing possible solutions.
Questa tesi è dedicata allo sviluppo e al collaudo di un sistema WSP (Wheel Slide Protection) finalizzato ad un’applicazione sui treni merci. Lo scopo di questo dispositivo è di evitare il bloccaggio delle ruote e ridurne la probabilità di slittamento nel caso in cui, durante la frenata, le condizioni di aderenza al contatto ruota-rotaia siano compromesse a causa della presenza di acqua, foglie o grasso sulla superficie della rotaia. Il vantaggio principale garantito da questo sistema consiste nella riduzione dei fenomeni di danneggiamento delle ruote e delle rotaie e nella conseguente riduzione dei costi di manutenzione. Poiché il dispositivo è pensato per essere applicato a bordo dei carri merci, le scelte progettuali sono orientate alla massima semplicità, sia per quanto riguarda i componenti da montare a bordo del veicolo, sia per quanto riguarda la logica di controllo. Lo sviluppo di quest’ultima ha come scopo non solo la riduzione dello slittamento delle ruote, ma anche la riduzione della distanza di frenatura e del consumo di aria. La logica di controllo è collaudata su un banco prova Hardware-in-the-Loop, in cui il sistema WSP è incluso in una simulazione numerica dedicata alla dinamica del veicolo e a parte dell’impianto frenante: i parametri misurati al banco sono impiegati in tempo reale per calcolare la forza frenante e come essa agisce sulla dinamica del carro; contemporaneamente, i parametri relativi alla dinamica del veicolo sono utilizzati per comandare l’attivazione del WSP al banco prova. Il modello numerico del sistema è validato confrontandolo con i risultati sperimentali al fine di garantire una corretta rappresentazione dei reali componenti del banco. Infine, il dispositivo è testato in diverse condizioni operative, dimostrandone la capacità di evitare bloccaggi delle ruote, l’efficacia nel ridurre le distanze di frenatura di oltre il 30% limitando gli slittamenti e garantendo un consumo di aria contenuto. Viene valutata la robustezza della logica di controllo nel caso di condizioni particolarmente critiche, individuandone i limiti e proponendo possibili soluzioni.
Design and testing of a HiL test bench for a novel WSP system
VALBUZZI, JACOPO
2023/2024
Abstract
This thesis work is devoted to the development and testing of a Wheel Slide Protection (WSP) system to be implemented on freight trains. The aim of this device is to avoid wheel locking and reduce the occurrence of wheel sliding in case, during braking, the wheel-rail contact conditions feature a reduced adhesion due to the presence of water, leaves, grease or other contaminants on the rail surface. The main advantage of such kind of system is the reduction of damages on the wheel tread and on the rail and the consequent reduction of maintenance costs. Since the system has to be implemented on a freight wagon, the design choices are oriented to the maximum simplicity concerning both the hardware and the software, respectively the components to be installed on the vehicle and the control logic. The control logic development, in particular, is aimed not only to the reduction of wheel sliding phenomena but also to the reduction of stopping distance and air consumption. The proposed control logic is tested on a Hardware-in-the-Loop test bench, where the Wheel Slide Protection system is embedded in a real-time numerical simulation representing the vehicle dynamics and part of the braking system: the measurements performed on the test bench are used to compute in real time the braking force and its impact on the vehicle dynamics; at the same time, the vehicle dynamics parameters are used to determine the activations of the system on the test bench. The numerical model of the WSP system is validated on the experimental results in order to ensure that the model represents accurately the real components of the system. Finally, the system is tested under different operating conditions, demonstrating its capability to avoid wheel locking, to reduce the stopping distances by more than 30% limiting the wheel sliding and at the same time to ensure a reduced air consumption. The robustness of the logic is eventually tested in order to evaluate if the system is able to cope with particularly critical conditions, individuating its limits and proposing possible solutions.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Valbuzzi_Thesis.pdf
non accessibile
Descrizione: Testo della Tesi
Dimensione
6.64 MB
Formato
Adobe PDF
|
6.64 MB | Adobe PDF | Visualizza/Apri |
2024_12_Valbuzzi_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
542.26 kB
Formato
Adobe PDF
|
542.26 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230196