The climate crisis and growing environmental issues demand a radical shift in industrial practices, steering them toward more sustainable solutions. Biomaterials, due to their biodegradability and renewability, represent a promising alternative to conventional materials. Designers are thus called to explore new solutions to contribute to a more responsible economy, aiming for regenerative development. This thesis investigates the possibility of combining the growth of mycelium with bacterial cellulose (BC), a biomaterial already widely used in experimentation but with limitations related to its instability over time and its tendency to absorb moisture. In contrast, mycelium, the vegetative part of fungi, is a naturally water-resistant biomaterial that can improve the critical properties of BC. The experimentation was conducted following the Material Driven Design (MDD) method and a DIY approach, exploring different techniques for growing the multi-organism composite material. The experimentation involved using BC obtained from the fermentation of Kombucha tea, both in sheet form and reduced to a ‘tartar’ state, to combine it with mycelium. The most promising samples were prepared using pre-inoculated substrate with fungal spores and BC sheets. The BC layer is fully covered with pure mycelium, resulting in a flexible and durable material. Growth protocols were further tested and optimized for quantity and ingredients. A crucial phase of the experimentation focused on refining techniques for treating the pre- and post-growth samples, creating surface textures, and adapting growth to larger sample sizes. The resulting composite material showed improved Water Contact Angle (WCA) values, maintaining a more stable color over time. With a consistency similar to leather, both in its one-sided usage and its texture, an application opportunity emerged in the upholstered furniture sector. To highlight the final characteristics, the thesis concluded with the design and prototyping of a bench intended for fashion stores. The object, made of iron, combines the material and sensory contrast of metal sheet with the irregular and unique aesthetic of the biomaterial, which emerges from small modular padded areas. Experimenting with this material paves the way for new design opportunities, both in terms of self-production and, as in the case of the final prototype, in related sectors such as fashion, which require effective and urgent changes.
La crisi climatica e i crescenti problemi ambientali richiedono un cambiamento radicale nelle pratiche industriali, orientandole verso soluzioni più sostenibili. I biomateriali, grazie alla loro biodegradabilità e rinnovabilità, rappresentano un’alternativa promettente ai materiali convenzionali. I designer sono quindi chiamati a esplorare nuove soluzioni per contribuire a un’economia più responsabile, che tenda verso uno sviluppo rigenerativo. Questa tesi indaga la possibilità di combinare la crescita di micelio con la cellulosa batterica (BC), un biomateriale già ampiamente utilizzato nel campo della sperimentazione, ma che presenta limiti legati alla sua instabilità nel tempo e alla tendenza ad assorbire umidità. Al contrario, il micelio, la parte vegetativa dei funghi, è un biomateriale naturalmente resistente all’acqua e può migliorare le proprietà critiche della BC. La sperimentazione è stata condotta seguendo il metodo del Material Driven Design (MDD) e l’approccio DIY, esplorando differenti tecniche per la crescita del materiale composito multi-organism. La sperimentazione ha previsto l’utilizzo della BC ottenuta dalla fermentazione del tè di Kombucha, sia in forma di fogli sia ridotta in ‘tartare’, per combinarla con il micelio. I campioni più interessanti sono stati preparati utilizzando substrato pre-inoculato con spore fungine e la cellulosa in fogli. Lo strato di BC viene completamente ricoperto di micelio puro, ottenendo un materiale flessibile e resistente. I protocolli di crescita sono stati ulteriormente testati e ottimizzati per quantità e ingredienti utilizzati. Una fase cruciale della sperimentazione è stata la messa a punto delle tecniche per trattare i campioni pre e post-crescita, nonché per la creazione di texture superficiali e la crescita adattata per campioni di dimensioni maggiori. Il materiale composito risultante ha mostrato migliori valori di WCA (Water Contact Angle), mantenendo una colorazione più stabile nel tempo. Con una consistenza simile alla pelle, sia per la sua mono lateralità di utilizzo che per la sua consistenza, è emersa l’opportunità applicativa nel settore dell’arredo imbottito. Per esaltare le caratteristiche finali, la tesi si è conclusa con la progettazione e prototipazione di una panca destinata a negozi del settore moda. L’oggetto, realizzato in lamiera di acciaio, unisce il contrasto materico e sensoriale del metallo con l’estetica irregolare e unica del biomateriale, che emerge da piccole aree imbottite modulari. La sperimentazione di questo materiale apre la strada a nuove opportunità progettuali sia in ottica di autoproduzione, sia, come nel caso del prototipo finale, in settori affini, come quello della moda, che necessitano cambiamenti efficaci e urgenti.
UN_SKIN: Investigation of the combined potential of Mycelium and Bacterial Cellulose to create a promising biomaterial for broader applications in product design
Fedele, Francesca
2023/2024
Abstract
The climate crisis and growing environmental issues demand a radical shift in industrial practices, steering them toward more sustainable solutions. Biomaterials, due to their biodegradability and renewability, represent a promising alternative to conventional materials. Designers are thus called to explore new solutions to contribute to a more responsible economy, aiming for regenerative development. This thesis investigates the possibility of combining the growth of mycelium with bacterial cellulose (BC), a biomaterial already widely used in experimentation but with limitations related to its instability over time and its tendency to absorb moisture. In contrast, mycelium, the vegetative part of fungi, is a naturally water-resistant biomaterial that can improve the critical properties of BC. The experimentation was conducted following the Material Driven Design (MDD) method and a DIY approach, exploring different techniques for growing the multi-organism composite material. The experimentation involved using BC obtained from the fermentation of Kombucha tea, both in sheet form and reduced to a ‘tartar’ state, to combine it with mycelium. The most promising samples were prepared using pre-inoculated substrate with fungal spores and BC sheets. The BC layer is fully covered with pure mycelium, resulting in a flexible and durable material. Growth protocols were further tested and optimized for quantity and ingredients. A crucial phase of the experimentation focused on refining techniques for treating the pre- and post-growth samples, creating surface textures, and adapting growth to larger sample sizes. The resulting composite material showed improved Water Contact Angle (WCA) values, maintaining a more stable color over time. With a consistency similar to leather, both in its one-sided usage and its texture, an application opportunity emerged in the upholstered furniture sector. To highlight the final characteristics, the thesis concluded with the design and prototyping of a bench intended for fashion stores. The object, made of iron, combines the material and sensory contrast of metal sheet with the irregular and unique aesthetic of the biomaterial, which emerges from small modular padded areas. Experimenting with this material paves the way for new design opportunities, both in terms of self-production and, as in the case of the final prototype, in related sectors such as fashion, which require effective and urgent changes.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Fedele.pdf
accessibile in internet per tutti
Descrizione: testo tesi
Dimensione
30.43 MB
Formato
Adobe PDF
|
30.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230212