Over the past decades, lunar missions have increased substantially driven by the Moon’s potential in economic, scientific, military, and commercial sectors. As a result, more spacecrafts are expected to operate in or transit through the region between Earth and the Moon, known as Cislunar space. The expected increase in space traffic raises the likelihood of collision events, generating fragments that could disperse chaotically throughout the region. To ensure the safety of future missions and infrastructures, it is essential to establish a robust network of observational spacecrafts capable of monitoring these fragments. This study evaluates the effectiveness of such network by positioning multiple observers in various Cislunar orbit families and assessing their ability to monitor debris over time. Twenty-eight orbits, from different Cislunar and lunar families, are chosen for their stability and relevance to Space Situational Awareness (SSA), and potential to form a network capable of covering the entire region. Ten catastrophic collisions are simulated within these orbits using the NASA Standard Breakup Model (SBM), and the resulting debris clouds propagated over three months in the Circular Restricted Three Body Problem (CRTBP) framework. The risks posed by the debris to the Earth, the Moon, and operational spacecrafts in Geostationary Orbit (GEO) are analysed, as well as the performance of the observational network in tracking the debris. Most collisions present moderate risks to celestial bodies. Collisions in the L2 Halo, especially, pose a more significant threat to lunar operations due to their proximity to the Moon, while risks to the GEO belt remain relatively low. Among the various orbit families, L2 Halos emerged as the most effective candidates for SSA surveillance, owing to their broad coverage of the Cislunar region and the stability they provide as fragments tend to accumulate nearby. Furthermore, paired with L1 Halos and Distant Retrograde Orbits (DROs), this combination of orbits extends the overall coverage time: a near-complete tracking rate is achieved, reaching a maximum of 99.4% when monitoring the most persistent fragments.
Nelle ultime decadi, le missioni sulla Luna sono aumentate significativamente, spinte dal suo potenziale economico, scientifico, militare e commerciale. Si prevede perciò che un numero crescente di satelliti opererà o transiterà nella regione tra la Terra e la Luna, conosciuta come spazio Cislunare. Questo crescente traffico aumenta la probabilità di collisioni, generando frammenti che potrebbero disperdersi caoticamente in tutta la regione. Per garantire la sicurezza delle future missioni ed infrastrutture, è essenziale stabilire una rete robusta di osservatori in grado di monitorare questi frammenti. Questo studio valuta l’efficacia di tale rete, posizionando diversi osservatori in varie famiglie orbitali Cislunari e analizzando la loro capacità di monitorare i detriti nel tempo. Ventotto orbite, appartenenti a diverse famiglie Cislunari e lunari, sono state scelte in virtù della loro stabilità, rilevanza per la Space Situational Awareness (SSA) e potenziale nel formare una rete in grado di coprire l’intera regione. Dieci collisioni catastrofiche sono state simulate su queste orbite utilizzando il NASA Standard Breakup Model (SBM), e le nuvole di detriti risultanti propagate per tre mesi all’interno del framework del Problema dei Tre Corpi Circolare Ristretto (CRTBP). I rischi che i detriti pongono alla Terra, alla Luna e ai veicoli operativi in Orbita Geostazionaria (GEO) sono analizzati, nonché le prestazioni della rete di osservazione nel monitorare i detriti. La maggior parte delle collisioni presenta rischi moderati per i corpi celesti. In particolare, le collisioni nelle L2 Halos, rappresentano una minaccia più significativa per le operazioni lunari, data la loro vicinanza alla Luna, mentre i rischi per la cintura GEO rimangono relativamente bassi. Tra le diverse famiglie orbitali, le L2 Halos si sono dimostrate le candidate più efficaci per la sorveglianza SSA, grazie alla loro ampia copertura della regione cislunare e alla stabilità offerta, essendo che i frammenti tendono ad accumularsi nelle loro vicinanze. Inoltre, combinandole con le orbite L1 Halo e con le Distant Retrograde Orbits (DROs), il tempo complessivo di copertura può essere esteso, consentendo alla rete di raggiungere una percentuale di tracciamento quasi completa, con una copertura massima del 99.4% nel monitoraggio dei frammenti visti più frequentemente.
Performance assessment of cislunar SSA network for fragmentation event monitoring
GAMBAROTTO, CHIARA
2023/2024
Abstract
Over the past decades, lunar missions have increased substantially driven by the Moon’s potential in economic, scientific, military, and commercial sectors. As a result, more spacecrafts are expected to operate in or transit through the region between Earth and the Moon, known as Cislunar space. The expected increase in space traffic raises the likelihood of collision events, generating fragments that could disperse chaotically throughout the region. To ensure the safety of future missions and infrastructures, it is essential to establish a robust network of observational spacecrafts capable of monitoring these fragments. This study evaluates the effectiveness of such network by positioning multiple observers in various Cislunar orbit families and assessing their ability to monitor debris over time. Twenty-eight orbits, from different Cislunar and lunar families, are chosen for their stability and relevance to Space Situational Awareness (SSA), and potential to form a network capable of covering the entire region. Ten catastrophic collisions are simulated within these orbits using the NASA Standard Breakup Model (SBM), and the resulting debris clouds propagated over three months in the Circular Restricted Three Body Problem (CRTBP) framework. The risks posed by the debris to the Earth, the Moon, and operational spacecrafts in Geostationary Orbit (GEO) are analysed, as well as the performance of the observational network in tracking the debris. Most collisions present moderate risks to celestial bodies. Collisions in the L2 Halo, especially, pose a more significant threat to lunar operations due to their proximity to the Moon, while risks to the GEO belt remain relatively low. Among the various orbit families, L2 Halos emerged as the most effective candidates for SSA surveillance, owing to their broad coverage of the Cislunar region and the stability they provide as fragments tend to accumulate nearby. Furthermore, paired with L1 Halos and Distant Retrograde Orbits (DROs), this combination of orbits extends the overall coverage time: a near-complete tracking rate is achieved, reaching a maximum of 99.4% when monitoring the most persistent fragments.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Gambarotto_Executive Summary_02.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
3.89 MB
Formato
Adobe PDF
|
3.89 MB | Adobe PDF | Visualizza/Apri |
2024_12_Gambarotto_Thesis_01.pdf
accessibile in internet per tutti
Descrizione: Testo della Tesi
Dimensione
45.78 MB
Formato
Adobe PDF
|
45.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230221