As global awareness of air quality intensifies, research into the intricate dynamics of pollution has become increasingly crucial. This thesis presents a spatio-temporal analysis of ozone pollution levels in the Lombardia region, via a Bayesian hierarchical approach designed specifically for count data. By focusing on the frequency of days each month where ozone concentrations exceed established health and environmental thresholds, this work employs binomial regression models to account for the bounded nature of the data. By integrating relevant atmospheric data, this study underscores the capacity of Bayesian models to assess pollution dynamics and their potential to inform targeted environmental policies. The findings reveal that temperature and radiation significantly influence ozone concentration levels, while rain and wind mitigate its formation, underscoring the adverse implications of ongoing global warming for air quality and public health.
L’attenzione globale sempre più crescente negli ultimi anni verso la qualità dell’aria ha reso fondamentale lo studio delle dinamiche dell’inquinamento atmosferico. Questa tesi propone un’analisi spaziotemporale dei livelli di ozono nella regione Lombardia, adottando un approccio gerarchico bayesiano specifico per i dati di conteggio. In particolare, vengono sviluppati modelli di regressione binomiale per analizzare la frequenza mensile dei giorni in cui le concentrazioni di ozono superano le soglie critiche per la salute e l’ambiente. Integraziondo pertinenti dati atmosferici, i modelli bayesiani presentati sono in grado di interpretare le dinamiche dell’inquinamento di ozono e diventano una solida base per definire politiche ambientali più efficaci e mirate.
Bayesian spatio-temporal models for over-threshold ozone pollution in Lombardia
Sisti, Beatrice
2023/2024
Abstract
As global awareness of air quality intensifies, research into the intricate dynamics of pollution has become increasingly crucial. This thesis presents a spatio-temporal analysis of ozone pollution levels in the Lombardia region, via a Bayesian hierarchical approach designed specifically for count data. By focusing on the frequency of days each month where ozone concentrations exceed established health and environmental thresholds, this work employs binomial regression models to account for the bounded nature of the data. By integrating relevant atmospheric data, this study underscores the capacity of Bayesian models to assess pollution dynamics and their potential to inform targeted environmental policies. The findings reveal that temperature and radiation significantly influence ozone concentration levels, while rain and wind mitigate its formation, underscoring the adverse implications of ongoing global warming for air quality and public health.File | Dimensione | Formato | |
---|---|---|---|
Executive_Summary.pdf
accessibile in internet per tutti
Descrizione: Executive summary
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri |
Articolo_tesi.pdf
accessibile in internet per tutti
Descrizione: Thesis
Dimensione
40.69 MB
Formato
Adobe PDF
|
40.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230250