With rising interest in aeroacoustics studies for eVTOL (electric vertical take-off landing) vehicles especially in the context of Urban Air Mobility (UAM), the need for efficient tools with accurate predictive capability has led to the development of a numerical multi-fidelity approach to the solution of this problem. This approach is based on the idea that an aeroacoustic prediction can be obtained by mixing a mid-fidelity aerodynamic solver (DUST) and a high-fidelity acoustic solver (SU2 - FWH). This approach is less costly than using a high-fidelity tool for the aerodynamics simulation, yet it delivers accurate enough results, thus represents an effective method to be used in preliminary phase for eVTOL designing. This thesis that aims to develop and implement a new interface coupling the aerodynamic solver DUST with the acoustic solver SU2 – FWH since the current interface requires to perform two aerodynamics simulations from DUST and merge them with a MATLAB script in order to produce the input file needed for the acoustic solver. The development of this new interface will reduce the costs of the analysis in both time and computation efforts. Focus of this thesis is on non-linear vortex lattice model used by DUST to model aerodynamic surfaces. The advantage of this model is to introduce viscous effects into the flow computation, however information on thickness geometry is lost and must be recovered for the acoustic analysis because in order to compute the aeroacoustic footprint of an aerodynamic body, FWH (Ffowcs Williams-Hawkings) formulation requires complete geometry, velocity, density and pressure fluctuations computed on the body. In order to verify the effectiveness of the implementation of the interface a series of output comparisons between the results obtained using the current and the new interface was done on different test cases evaluating its reliability for different situations. Once the reliability of the method was proven an aeroacoustic analysis was conducted on four configurations of hovering tandem propellers in order to compare their overall sound pressure levels (OASPL).
Dato il crescente interesse nei confronti dello studio dell'aeroacustica dei velivoli eVTOL (electric vertical take-off and landing), soprattutto nel contesto della Mobilità Aerea Urbana (UAM), la necessità di avere strumenti efficienti con accurate capacità predittive ha portato allo sviluppo di un metodo numerico a fedeltà multipla per l'affronto di questo problema. Questo approccio si basa sull'idea che si possa ottenere un'approssimazione aeroacustica combinando un risolutore aerodinamico a media fedeltà (DUST) con un risolutore acustico ad alta fedeltà (SU2 - FWH). L'uso di tale strumento risulta meno costoso rispetto all'utilizzo di uno strumento ad alta fedeltà per la simulazione aerodinamica, pur fornendo risultati sufficientemente accurati e rappresentado quindi un metodo efficace durante le fasi preliminari del progetto di un eVTOL. Questa tesi ha l'obiettivo di sviluppare e implementare una nuova interfaccia che colleghi il risolutore aerodinamico DUST con il risolutore acustico SU2 – FWH, in quanto l'interfaccia attuale interfaccia necessita invece di due simulazioni aerodinamiche da DUST e di uno script MATLAB per ottenere il file di input per il risolutore acustico. Con questa nuova interfaccia si intende ridurre il costo computazionale dell'analisi. Il presente lavoro prende in considerazione principalmente il modello non lineare a reticolo di vortice utilizzato da DUST per modellare le superfici aerodinamiche. Il vantaggio di questo modello è quello di introdurre gli effetti viscosi nel calcolo del flusso; tuttavia, le informazioni sulla geometria legate allo spessore vengono perse nel processo e devono essere recuperate, poiché la formulazione FWH (Ffowcs Williams-Hawkings) le richiede per il calcolo dell'impronta acustica di un corpo aerodinamico. Allo scopo di verificare la correttezza dell'implementazione, mediante lo studio di diversi casi si sono messi a confronto i risultati ottenuti utilizzando l'interfaccia attuale con quelli ricavati impiegando la nuova interfaccia, andando a valutarne l'affidabilità. Una volta provata l'affidabilità del metodo, questo è stato applicato per condurre un'analisi aeroacustica su quattro diverse configurazioni di eliche in tandem per confrontarne l'impronta acoustica.
Implementation of a methodology for coupling mid-fidelity aerodynamic solutions to a FWH acoustic solver
Capitanio, Francesco
2023/2024
Abstract
With rising interest in aeroacoustics studies for eVTOL (electric vertical take-off landing) vehicles especially in the context of Urban Air Mobility (UAM), the need for efficient tools with accurate predictive capability has led to the development of a numerical multi-fidelity approach to the solution of this problem. This approach is based on the idea that an aeroacoustic prediction can be obtained by mixing a mid-fidelity aerodynamic solver (DUST) and a high-fidelity acoustic solver (SU2 - FWH). This approach is less costly than using a high-fidelity tool for the aerodynamics simulation, yet it delivers accurate enough results, thus represents an effective method to be used in preliminary phase for eVTOL designing. This thesis that aims to develop and implement a new interface coupling the aerodynamic solver DUST with the acoustic solver SU2 – FWH since the current interface requires to perform two aerodynamics simulations from DUST and merge them with a MATLAB script in order to produce the input file needed for the acoustic solver. The development of this new interface will reduce the costs of the analysis in both time and computation efforts. Focus of this thesis is on non-linear vortex lattice model used by DUST to model aerodynamic surfaces. The advantage of this model is to introduce viscous effects into the flow computation, however information on thickness geometry is lost and must be recovered for the acoustic analysis because in order to compute the aeroacoustic footprint of an aerodynamic body, FWH (Ffowcs Williams-Hawkings) formulation requires complete geometry, velocity, density and pressure fluctuations computed on the body. In order to verify the effectiveness of the implementation of the interface a series of output comparisons between the results obtained using the current and the new interface was done on different test cases evaluating its reliability for different situations. Once the reliability of the method was proven an aeroacoustic analysis was conducted on four configurations of hovering tandem propellers in order to compare their overall sound pressure levels (OASPL).File | Dimensione | Formato | |
---|---|---|---|
10574475_Thesis_Francesco_Capitanio.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
3.41 MB
Formato
Adobe PDF
|
3.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230262