Objective: The digital transformation of the healthcare sector, while innovative for diagnoses and treatments, presents new challenges related to patient safety and the need to maintain a patient-centred approach. Among the complex healthcare contexts, the transfusion sector, inherently both safety-critical and mission-critical, is increasingly characterized by the integration of digital solutions. These technologies, which play a crucial role in managing clinical data and supporting medical decision-making, are essential for ensuring the safety and efficiency of the transfusion process. However, the adoption of such tools has highlighted the need to consider Human and Organizational Factors (HOFs) to ensure the effective and safe integration of technology in high-risk healthcare settings. Even though studies and hemovigilance reports have pointed out such significant errors, including interoperability issues and inadequate management of IT alerts, which increase the complexity and risks of the process, the literature has shown a lack of models to handle this. This master thesis aims to fill this gap by exploring the impact of digitalization on the transfusion process through a qualitative and quantitative analysis of the risks associated with the interaction among technology, operators, and organizational structure. Methodology: The research process was developed in three main phases. First, a literature review was conducted to identify and classify relevant HOFs in the context of digital healthcare. Then, these findings were integrated into a risk analysis applied to e-health solutions in the transfusion process, resulting in the development of a theoretical model and the creation of a practical tool, implemented in an Excel file. This tool was subsequently validated in collaboration with two hospitals and the developer of the software under analysis. Finally, the methodology was tested in a transfusion department of a Lombardy hospital, in order to calibrate the tool's parameters and verify its effectiveness. Results: The e-TRAST (digitalised Transfusion Risk Analysis from a Socio-Technical perspective) framework was developed by integrating the Failure Modes, Effects and Criticality Analyis (FMECA) with the Cognitive Reliability and Error Analysis Method (CREAM). This combination enables an in-depth analysis of failure modes within the digitalized transfusion process and their root causes. The tool’s underlying logic supports both safety and risk assessments that incorporate human, organizational and technological factors, providing a holistic perspective on risk and facilitating the contextualization of e-health solutions within their operational environments. The Excel tool uncovered that over 15% of failure modes present a higher likelihood of occurrence than previously estimated when human and organizational factors are considered. This tool proved to be effective in pinpointing areas for improvement, both for healthcare institutions - through enhanced training programs and stress management strategies - and for technology developers - by addressing system usability and reliability. In conclusion, the e-TRAST framework facilitates the safer and more efficient adoption of digital technologies within high-risk healthcare environments, ensuring patient safety and operational effectiveness.
Scopo: La trasformazione digitale del settore sanitario, sebbene innovativa in termini sia di diagnosi sia di trattamenti, presenta nuove sfide legate alla sicurezza del paziente e alla necessità di mantenere un approccio centrato su di esso. Tra i contesti sanitari complessi, il settore trasfusionale, intrinsecamente sia safety-critical che mission-critical, è sempre più caratterizzato dall’integrazione di soluzioni digitali. Queste tecnologie, che svolgono un ruolo cruciale nella gestione dei dati clinici e nel supporto alle decisioni mediche, sono essenziali per garantire la sicurezza e l'efficienza del processo trasfusionale. Tuttavia, l'adozione di tali strumenti ha evidenziato la necessità di considerare i fattori umani e organizzativi per assicurare l’integrazione efficace e sicura della tecnologia in contesti sanitari ad alto rischio. Sebbene svariati studi e rapporti di emovigilanza abbiano segnalato errori significativi, tra cui problemi di interoperabilità e gestione inadeguata degli avvisi informatici, che aumentano la complessità e i rischi del processo, la letteratura ha mostrato una carenza di modelli di rischio capaci di includere anche questi fattori nell'analisi. Questa tesi mira a colmare questo gap e dunque a esplorare l'impatto della digitalizzazione sul processo trasfusionale attraverso un'analisi qualitativa e quantitativa dei rischi associati all'interazione tra tecnologia, operatori e struttura organizzativa. Metodologia: Il processo di ricerca è stato sviluppato in tre fasi principali. In primo luogo, è stata condotta una revisione della letteratura per identificare e classificare i fattori umani e organizzativi rilevanti nel contesto della sanità digitale. Successivamente, questi risultati sono stati integrati in un’analisi del rischio applicata alle soluzioni digitali nel processo trasfusionale, portando allo sviluppo di un modello teorico e alla creazione di uno strumento pratico, implementato in un file Excel. Questo strumento è stato poi validato in collaborazione con due ospedali e con il gruppo sviluppatore del software in analisi ed infine testato nel reparto trasfusionale di un ospedale lombardo, al fine di calibrare i parametri dello strumento e verificarne l'efficacia. Risultati: È stato sviluppato e-TRAST (digitalised Transfusion Risk Analysis from a Socio-Technical perspective), un framework che integra la metodologia Failure Modes, Effects and Criticality Analyis (FMECA) con il modello Cognitive Reliability and Error Analysis Method (CREAM). Questa combinazione consente un’analisi approfondita delle modalità di guasto all'interno del processo trasfusionale digitalizzato e delle loro cause principali. La logica sottostante allo strumento supporta valutazioni sia di sicurezza che di rischio che includono fattori umani, organizzativi e tecnologici, offrendo una prospettiva olistica del rischio e facilitando la contestualizzazione delle soluzioni digitali nei loro ambienti operativi. Lo strumento Excel ha rivelato che oltre il 15% delle modalità di guasto presentano una probabilità di occorrenza più alta rispetto a quanto precedentemente stimato quando si considerano i fattori umani e organizzativi. Questo strumento si è inoltre dimostrato fondamentale per individuare aree di miglioramento, sia per le istituzioni sanitarie, attraverso programmi di formazione avanzata e strategie di gestione dello stress, sia per gli sviluppatori tecnologici, affrontando l'usabilità e l'affidabilità del sistema. In conclusione, il framework e-TRAST facilita un'adozione più sicura ed efficiente delle tecnologie digitali in ambienti sanitari ad alto rischio, garantendo la sicurezza del paziente e l'efficacia operativa.
Socio-technical risk analysis for the digitalised transfusion process: the e-TRAST tool
Corradi, Annalisa;Fasanotto, Chiara
2023/2024
Abstract
Objective: The digital transformation of the healthcare sector, while innovative for diagnoses and treatments, presents new challenges related to patient safety and the need to maintain a patient-centred approach. Among the complex healthcare contexts, the transfusion sector, inherently both safety-critical and mission-critical, is increasingly characterized by the integration of digital solutions. These technologies, which play a crucial role in managing clinical data and supporting medical decision-making, are essential for ensuring the safety and efficiency of the transfusion process. However, the adoption of such tools has highlighted the need to consider Human and Organizational Factors (HOFs) to ensure the effective and safe integration of technology in high-risk healthcare settings. Even though studies and hemovigilance reports have pointed out such significant errors, including interoperability issues and inadequate management of IT alerts, which increase the complexity and risks of the process, the literature has shown a lack of models to handle this. This master thesis aims to fill this gap by exploring the impact of digitalization on the transfusion process through a qualitative and quantitative analysis of the risks associated with the interaction among technology, operators, and organizational structure. Methodology: The research process was developed in three main phases. First, a literature review was conducted to identify and classify relevant HOFs in the context of digital healthcare. Then, these findings were integrated into a risk analysis applied to e-health solutions in the transfusion process, resulting in the development of a theoretical model and the creation of a practical tool, implemented in an Excel file. This tool was subsequently validated in collaboration with two hospitals and the developer of the software under analysis. Finally, the methodology was tested in a transfusion department of a Lombardy hospital, in order to calibrate the tool's parameters and verify its effectiveness. Results: The e-TRAST (digitalised Transfusion Risk Analysis from a Socio-Technical perspective) framework was developed by integrating the Failure Modes, Effects and Criticality Analyis (FMECA) with the Cognitive Reliability and Error Analysis Method (CREAM). This combination enables an in-depth analysis of failure modes within the digitalized transfusion process and their root causes. The tool’s underlying logic supports both safety and risk assessments that incorporate human, organizational and technological factors, providing a holistic perspective on risk and facilitating the contextualization of e-health solutions within their operational environments. The Excel tool uncovered that over 15% of failure modes present a higher likelihood of occurrence than previously estimated when human and organizational factors are considered. This tool proved to be effective in pinpointing areas for improvement, both for healthcare institutions - through enhanced training programs and stress management strategies - and for technology developers - by addressing system usability and reliability. In conclusion, the e-TRAST framework facilitates the safer and more efficient adoption of digital technologies within high-risk healthcare environments, ensuring patient safety and operational effectiveness.| File | Dimensione | Formato | |
|---|---|---|---|
|
2024_12_Corradi_Fasanotto_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
7.15 MB
Formato
Adobe PDF
|
7.15 MB | Adobe PDF | Visualizza/Apri |
|
2024_12_Corradi_Fasanotto_Executive Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230326