In the competitive landscape of China’s post-pandemic job market, matching candidates effectively to job positions has become increasingly challenging for both job seekers and recruiters. Traditional resume formats often fail to capture the depth of a candidate's skills and experiences relevant to specific roles, while human resource departments face difficulties efficiently screening large volumes of resumes, often leading to biased or incomplete evaluations. This research explores how artificial intelligence , particularly Natural Language Processing and big data analytics, can bridge this information gap by enhancing resume optimization and improving job-matching accuracy. Using a multi-method approach of interviews and case studies, this study investigates the specific pain points experienced by job seekers and HR professionals. Findings reveal that AI-driven resume customization helps job seekers tailor their profiles to align with job requirements, while big data-driven insights assist recruiters in making more informed, objective decisions by providing multidimensional candidate evaluations. The study focuses on the Boss Zhiping recruitment platform, utilizing it as a case for implementing these AI technologies due to its prominence and features in China’s recruitment market. The research demonstrates that AI-powered tools not only improve the efficiency and accuracy of the recruitment process but also foster a more inclusive, bias-reduced hiring environment. The conclusions highlight the potential of AI-driven solutions to optimize recruitment practices, making job matching more effective and meaningful for both candidates and employers. This study contributes to the development of advanced recruitment technologies, offering practical insights for integrating AI into modern hiring practices.
Nel panorama competitivo del mercato del lavoro cinese post-pandemia, il corretto abbinamento tra candidati e posizioni lavorative è diventato sempre più complesso sia per i candidati che per i reclutatori. I formati tradizionali dei CV spesso non riescono a rappresentare adeguatamente le competenze e le esperienze di un candidato in relazione a ruoli specifici, mentre i reparti delle risorse umane (HR) faticano a gestire in modo efficiente grandi volumi di CV, rischiando valutazioni incomplete o influenzate da pregiudizi. Questa ricerca esplora come l’intelligenza artificiale (IA), in particolare l'elaborazione del linguaggio naturale (NLP) e l'analisi dei big data, possa ridurre questo divario informativo migliorando l’ottimizzazione dei CV e l’accuratezza nell’abbinamento tra candidati e posizioni lavorative. Attraverso un approccio metodologico misto di interviste e casi di studio, lo studio esamina i problemi specifici vissuti dai candidati e dai professionisti delle risorse umane. I risultati dimostrano che la personalizzazione dei CV tramite l’IA aiuta i candidati a adattare il loro profilo ai requisiti dei ruoli, mentre le informazioni fornite dai big data supportano i reclutatori nel prendere decisioni più informate e oggettive, grazie a valutazioni multidimensionali dei candidati. Lo studio si concentra sulla piattaforma di reclutamento Boss Zhiping, utilizzandola come caso per l'implementazione di queste tecnologie IA grazie alla sua rilevanza e funzionalità nel mercato cinese del reclutamento. La ricerca dimostra che gli strumenti basati sull’IA non solo migliorano l’efficienza e l’accuratezza del processo di reclutamento, ma promuovono anche un ambiente di assunzione più inclusivo e ridotto dai pregiudizi. Le conclusioni evidenziano il potenziale delle soluzioni IA per ottimizzare le pratiche di reclutamento, rendendo l’abbinamento di lavoro più efficace e significativo sia per i candidati che per i datori di lavoro. Questo studio contribuisce allo sviluppo di tecnologie di reclutamento avanzate, offrendo intuizioni pratiche per integrare l'IA nelle pratiche di assunzione moderne.
AI-enhanced solutions for job matching on Boss Zhiping (China's real-time communication recruitment software)
Xu, Shenghui
2024/2025
Abstract
In the competitive landscape of China’s post-pandemic job market, matching candidates effectively to job positions has become increasingly challenging for both job seekers and recruiters. Traditional resume formats often fail to capture the depth of a candidate's skills and experiences relevant to specific roles, while human resource departments face difficulties efficiently screening large volumes of resumes, often leading to biased or incomplete evaluations. This research explores how artificial intelligence , particularly Natural Language Processing and big data analytics, can bridge this information gap by enhancing resume optimization and improving job-matching accuracy. Using a multi-method approach of interviews and case studies, this study investigates the specific pain points experienced by job seekers and HR professionals. Findings reveal that AI-driven resume customization helps job seekers tailor their profiles to align with job requirements, while big data-driven insights assist recruiters in making more informed, objective decisions by providing multidimensional candidate evaluations. The study focuses on the Boss Zhiping recruitment platform, utilizing it as a case for implementing these AI technologies due to its prominence and features in China’s recruitment market. The research demonstrates that AI-powered tools not only improve the efficiency and accuracy of the recruitment process but also foster a more inclusive, bias-reduced hiring environment. The conclusions highlight the potential of AI-driven solutions to optimize recruitment practices, making job matching more effective and meaningful for both candidates and employers. This study contributes to the development of advanced recruitment technologies, offering practical insights for integrating AI into modern hiring practices.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Xu.pdf
accessibile in internet per tutti
Dimensione
9.52 MB
Formato
Adobe PDF
|
9.52 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230342