Gene delivery using non-viral vectors offers a promising avenue for therapeutic intervention in neurodegenerative diseases such as ALS. This work aims to improve ALS treatment strategies and develop a reliable in vitro model as a robust platform for evaluating innovative therapies that incorporate advanced nanotechnologies. This study specifically examines the effectiveness of a combined therapeutic approach using LNA GapmeR and the pharmacological agent IFB-088, each targeting critical pathological mechanisms linked to ALS progression. GapmeR effectively reduces RNA foci, implicated in disease development, while IFB-088 counteracts the harmful effects of dipeptide repeat (DPR) proteins. To optimize intracellular delivery, the study integrates viRNA with VibroFect technology, significantly improving GapmeR distribution throughout the cell, including into the nucleus. Additionally, a 3D-printed prototype has been created as support platform for recreating an in vitro neuromuscular junction (NMJ) model. While further refinement is needed, this prototype serves as a promising foundation for developing a functional model that closely mimics ALS pathophysiology, enhancing the capacity to assess treatment efficacy in conditions that closely mimic the disease conditions.
Il gene delivery tramite vettori non virali offre un promettente approccio terapeutico per le malattie neurodegenerative come la SLA. Questo lavoro mira a migliorare le strategie di trattamento per la SLA e a sviluppare un modello in vitro affidabile come piattaforma per la valutazione di terapie innovative che integrano nanotecnologie avanzate. Questo studio esamina specificamente l'efficacia di un approccio terapeutico combinato che utilizza LNA GapmeR e l’agente farmacologico IFB-088, ciascuno mirato a meccanismi patologici critici legati alla progressione della SLA. Il GapmeR riduce efficacemente i foci di RNA, implicati nello sviluppo della malattia, mentre IFB-088 contrasta gli effetti dannosi delle proteine a ripetizione dipeptidica. Per ottimizzare la somministrazione intracellulare, lo studio utilizza viRNA con la tecnologia VibroFect, migliorando significativamente la distribuzione del GapmeR all'interno della cellula, incluso nel nucleo. Inoltre, è stato creato un prototipo stampato in 3D come piattaforma di supporto per ricreare un modello in vitro di giunzione neuromuscolare. Sebbene sia necessario un ulteriore perfezionamento, questo prototipo rappresenta una promettente base per sviluppare un modello funzionale che riproduca da vicino la fisiopatologia della SLA, aumentando la capacità di valutare l’efficacia dei trattamenti in condizioni che mimano al meglio la patologia.
Bioengineering approaches for amyotrophic lateral sclerosis (ALS): from pre-clinical model to nanotherapeutic strategies
PASCAZIO, DAMIANO
2023/2024
Abstract
Gene delivery using non-viral vectors offers a promising avenue for therapeutic intervention in neurodegenerative diseases such as ALS. This work aims to improve ALS treatment strategies and develop a reliable in vitro model as a robust platform for evaluating innovative therapies that incorporate advanced nanotechnologies. This study specifically examines the effectiveness of a combined therapeutic approach using LNA GapmeR and the pharmacological agent IFB-088, each targeting critical pathological mechanisms linked to ALS progression. GapmeR effectively reduces RNA foci, implicated in disease development, while IFB-088 counteracts the harmful effects of dipeptide repeat (DPR) proteins. To optimize intracellular delivery, the study integrates viRNA with VibroFect technology, significantly improving GapmeR distribution throughout the cell, including into the nucleus. Additionally, a 3D-printed prototype has been created as support platform for recreating an in vitro neuromuscular junction (NMJ) model. While further refinement is needed, this prototype serves as a promising foundation for developing a functional model that closely mimics ALS pathophysiology, enhancing the capacity to assess treatment efficacy in conditions that closely mimic the disease conditions.File | Dimensione | Formato | |
---|---|---|---|
Tesi_D. Pascazio.pdf
non accessibile
Dimensione
3.98 MB
Formato
Adobe PDF
|
3.98 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230356