The European Commission’s target of achieving carbon neutrality by 2050 has as one of its main goals the expansion of renewable energy sources and the transition from fossil fuels to sustainable technologies such as hydrogen-based solutions. As a carbon-neutral energy carrier, hydrogen can be initially adopted in conventional energy systems, and successively progress towards dedicated applications. Europe currently produces approximately 9.8 million tons of hydrogen annually, with 96% originating from fossil fuels, highlighting the urgent need to increase green hydrogen production via renewable-powered electrolysis, which presently accounts for only 4% of the total. Hydrogen is projected to play a central role in future energy systems, driven by recent advancements in fuel cell technologies, notably by polymer electrolyte membrane electrolyzers (PEMEC). These are particularly suited for green hydrogen production due to their compact structure, suitability for intermittent operation, and compatibility with renewable energy sources. While PEMEC technology offers advantages in efficiency and response time over traditional methods, widespread adoption remains limited due to high material costs. To improve their understanding and optimize performances under varied operational conditions, Computational Fluid Dynamics (CFD) tools have been employed to provide insights into complex phenomena, including mass and heat transport, species diffusion, ion exchange, and electrochemical reactions, which are crucial to simulate PEMEC processes and for enhancing efficiency. In this context, this study applies the open-source openFuelCell2 library, based on the OpenFOAM framework, to carry out detailed simulations of two different PEMEC geometries: the first one consists of a parallel channel geometry and the second one is derived from porous flow distributor geometries. The modeling approach is based on a multi-region and multi-physics methodology, with each electrolyzer component - such as air and fuel channels, gas diffusion layers, catalyst layers, and bipolar plates - represented by unique computational grids and local domains. Specific governing equations are solved within each domain to model relevant physical interactions. After a thorough validation of the model on the first configuration the simulations systematically investigate the effects of key operating parameters - such as temperature, pressure, and rib-to-channel width ratio - on PEMEC performance. Findings demonstrate a good correlation with the expected trends and indicate that higher pressures tend to decrease electrolyzer performance and hydrogen yield, whereas increased temperatures have a positive impact. Moreover, the methodology has been extended also to the modeling of the porous flow distributor configuration, for which the simulations confirm openFuelCell2 ’s reliability in accurately representing modified cell geometries, highlighting its utility in PEMEC design and optimization.
L’obiettivo della Commissione Europea di raggiungere la neutralità carbonica entro il 2050 ha come uno dei suoi principali obiettivi l’espansione delle fonti di energia rinnovabile e la transizione dai combustibili fossili verso tecnologie sostenibili come le soluzioni basate sull’idrogeno. In quanto vettore energetico a emissioni zero, l’idrogeno può essere inizialmente adottato nei sistemi energetici convenzionali, per poi evolvere verso applicazioni dedicate. Attualmente, l’Europa produce circa 9,8 milioni di tonnellate di idrogeno all’anno, di cui il 96% proviene da combustibili fossili, evidenziando l’urgenza di incrementare la produzione di idrogeno verde tramite elettrolisi alimentata da fonti rinnovabili, che oggi rappresenta solo il 4% del totale. Si prevede che l’idrogeno avrà un ruolo centrale nei futuri sistemi energetici, grazie ai recenti progressi nelle tecnologie delle celle a combustibile, in particolare negli elettrolizzatori a membrana elettrolitica polimerica (PEMEC). Questi dispositivi sono particolarmente adatti alla produzione di idrogeno verde grazie alla loro struttura compatta, alla capacità di operare in modo intermittente e alla compatibilità con le fonti di energia rinnovabile. Sebbene la tecnologia PEMEC offra vantaggi in termini di efficienza e tempi di risposta rispetto ai metodi tradizionali, la sua diffusione è ancora limitata a causa degli elevati costi dei materiali. Per migliorare la comprensione di questi dispositivi e ottimizzarne le prestazioni in diverse condizioni operative, sono stati impiegati strumenti di fluidodinamica computazionale (CFD) per analizzare fenomeni complessi come il trasporto di massa e calore, la diffusione delle specie, lo scambio ionico e le reazioni elettrochimiche, aspetti cruciali per simulare i processi dei PEMEC e migliorarne l’efficienza. In questo contesto, lo studio applica la libreria open-source openFuelCell2, basata sulla piattaforma OpenFOAM, per condurre simulazioni dettagliate di due diverse geometrie di PEMEC: la prima con una geometria a canali paralleli e la seconda derivata da geometrie con distributori di flusso porosi. L’approccio di modellazione si basa su una metodologia multi-regione e multi-fisica, in cui ogni componente dell’elettrolizzatore - come i canali per aria e combustibile, gli strati di diffusione dei gas, gli strati catalitici e le piastre bipolari - è rappresentato da griglie computazionali specifiche e domini locali. In ciascun dominio vengono risolte equazioni governative specifiche per modellare le interazioni fisiche rilevanti. Dopo un’accurata validazione del modello sulla prima configurazione, le simulazioni analizzano sistematicamente gli effetti di parametri operativi chiave - come temperatura, pressione e rapporto tra larghezza delle nervature e dei canali - sulle prestazioni dei PEMEC. I risultati mostrano una buona correlazione con le tendenze attese, indicando che pressioni più elevate tendono a ridurre le prestazioni dell’elettrolizzatore e la produzione di idrogeno, mentre temperature più alte hanno un impatto positivo. Inoltre, la metodologia è stata estesa alla modellazione della configurazione con distributore di flusso poroso, per la quale le simulazioni confermano l’affidabilità di openFuelCell2 nel rappresentare accuratamente geometrie modificate delle celle, evidenziandone l’utilità nella progettazione e ottimizzazione dei PEMEC.
CFD simulation of electrochemical processes for the design of PEM electrolyzers by means of open-source tools
CISLAGHI, NICOLÒ
2023/2024
Abstract
The European Commission’s target of achieving carbon neutrality by 2050 has as one of its main goals the expansion of renewable energy sources and the transition from fossil fuels to sustainable technologies such as hydrogen-based solutions. As a carbon-neutral energy carrier, hydrogen can be initially adopted in conventional energy systems, and successively progress towards dedicated applications. Europe currently produces approximately 9.8 million tons of hydrogen annually, with 96% originating from fossil fuels, highlighting the urgent need to increase green hydrogen production via renewable-powered electrolysis, which presently accounts for only 4% of the total. Hydrogen is projected to play a central role in future energy systems, driven by recent advancements in fuel cell technologies, notably by polymer electrolyte membrane electrolyzers (PEMEC). These are particularly suited for green hydrogen production due to their compact structure, suitability for intermittent operation, and compatibility with renewable energy sources. While PEMEC technology offers advantages in efficiency and response time over traditional methods, widespread adoption remains limited due to high material costs. To improve their understanding and optimize performances under varied operational conditions, Computational Fluid Dynamics (CFD) tools have been employed to provide insights into complex phenomena, including mass and heat transport, species diffusion, ion exchange, and electrochemical reactions, which are crucial to simulate PEMEC processes and for enhancing efficiency. In this context, this study applies the open-source openFuelCell2 library, based on the OpenFOAM framework, to carry out detailed simulations of two different PEMEC geometries: the first one consists of a parallel channel geometry and the second one is derived from porous flow distributor geometries. The modeling approach is based on a multi-region and multi-physics methodology, with each electrolyzer component - such as air and fuel channels, gas diffusion layers, catalyst layers, and bipolar plates - represented by unique computational grids and local domains. Specific governing equations are solved within each domain to model relevant physical interactions. After a thorough validation of the model on the first configuration the simulations systematically investigate the effects of key operating parameters - such as temperature, pressure, and rib-to-channel width ratio - on PEMEC performance. Findings demonstrate a good correlation with the expected trends and indicate that higher pressures tend to decrease electrolyzer performance and hydrogen yield, whereas increased temperatures have a positive impact. Moreover, the methodology has been extended also to the modeling of the porous flow distributor configuration, for which the simulations confirm openFuelCell2 ’s reliability in accurately representing modified cell geometries, highlighting its utility in PEMEC design and optimization.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Cislaghi_Thesis.pdf
accessibile in internet per tutti
Descrizione: testo tesi
Dimensione
2.52 MB
Formato
Adobe PDF
|
2.52 MB | Adobe PDF | Visualizza/Apri |
2024_12_Cislaghi_Executive_Summary.pdf
accessibile in internet per tutti
Descrizione: executive summary
Dimensione
1.19 MB
Formato
Adobe PDF
|
1.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230410