The field of autonomous guidance and navigation has gained particular attention in contemporary research, particularly concerning CubeSat interplanetary missions. When deviations from a nominal trajectory occur due to factors such as thruster misfiring or unmodeled perturbations, a new nominal trajectory has to be computed. This process is usually performed on the ground, with commands subsequently transmitted to the spacecraft. In contrast, the goal of autonomous guidance and navigation is to perform this re-optimization on board without reliance on ground support. Indirect methods are particularly well-suited for onboard trajectory optimization due to their efficiency; however, they are characterized by a small region of convergence, meaning that the optimization algorithm requires a precise initial guess. This thesis focuses on studying and characterizing the region of convergence of an indirect method for low-thrust, fuel-optimal trajectory optimization when deviations from the nominal trajectory occur. The initial guess for this optimization is derived from the solution of the nominal trajectory. Additionally, Deep Neural Networks are trained to assess their performance in predicting convergence behavior given a new deviated spacecraft state, which includes position, velocity, and propellant mass. To approximate the region of convergence, the nominal state is perturbed multiple times along its trajectory. The resulting convergence behavior and solutions are then analyzed across various levels of perturbation. The retrieved solutions are organized into databases that will be used to train the Deep Neural Network models. The performance of these models is evaluated on unseen data to determine their ability to generalize the relationships within the dataset. In the mission scenario examined, a region of convergence is approximated and characterized, yielding valuable insights into how perturbations influence the re-optimization process. The Deep Neural Network model tasked with a binary classification achieved satisfactory results in predicting convergence behavior. Conversely, the regression model struggled to predict the solutions of the re-optimization process with sufficient accuracy. However, it may still provide a useful initial guess that could lead to faster convergence in the re-optimization process.

L'ambito della guida e della navigazione autonoma ha suscitato particolare interesse nella ricerca contemporanea, in particolare per quanto riguarda le missioni interplanetarie dei CubeSat. Quando si verificano deviazioni da una traiettoria nominale, dovute a fattori quali la mancata accensione del propulsore o le perturbazioni non modellate, è necessario calcolare una nuova traiettoria nominale. Questo processo viene solitamente eseguito a terra, con comandi successivamente trasmessi al veicolo spaziale. Al contrario, l'obiettivo della guida e della navigazione autonoma è di eseguire questa ri-ottimizzazione a bordo senza fare affidamento sul supporto da terra. I metodi indiretti sono particolarmente adatti per l'ottimizzazione della traiettoria a bordo grazie alla loro efficienza computazionale; tuttavia, sono caratterizzati da una piccola regione di convergenza, il che significa che l'algoritmo di ottimizzazione richiede una precisa guess iniziale. Questa tesi si concentra sullo studio e sulla caratterizzazione della regione di convergenza di un metodo indiretto per l'ottimizzazione della traiettoria a bassa spinta e ottimale per il consumo di carburante quando si verificano deviazioni dalla traiettoria nominale. La guess iniziale per questa ottimizzazione è derivata dalla soluzione della traiettoria nominale. Inoltre, le reti neurali profonde sono addestrate per valutare le loro prestazioni nel prevedere il comportamento di convergenza dato un nuovo stato deviato del veicolo spaziale, il quale include posizione, velocità e massa del propellente. Per approssimare la regione di convergenza, lo stato nominale viene perturbato più volte lungo la sua traiettoria. Il comportamento di convergenza risultante e le soluzioni vengono quindi analizzati su vari livelli di perturbazione. Le soluzioni recuperate vengono organizzate quindi in database che verranno utilizzati per addestrare i modelli di reti neurali profonde. Le prestazioni di questi modelli vengono valutate su nuovi dati per determinare la loro capacità di generalizzare le relazioni all'interno del set di dati. Nello scenario di missione esaminato, una regione di convergenza viene approssimata e caratterizzata, producendo preziose informazioni su come le perturbazioni influenzano il processo di ri-ottimizzazione. Il modello di rete neurale profonda incaricato di una classificazione binaria ha ottenuto risultati soddisfacenti nel prevedere il comportamento di convergenza. Al contrario, il modello di regressione ha mostrato dei limiti nel prevedere le soluzioni del processo di riottimizzazione con sufficiente accuratezza. Tuttavia, questo modello potrebbe comunque fornire una guess iniziale utile che potrebbe portare ad una convergenza più rapida nel processo di riottimizzazione.

Convergence analysis of indirect methods for trajectory optimization with neural networks

Biella, Alessandro
2023/2024

Abstract

The field of autonomous guidance and navigation has gained particular attention in contemporary research, particularly concerning CubeSat interplanetary missions. When deviations from a nominal trajectory occur due to factors such as thruster misfiring or unmodeled perturbations, a new nominal trajectory has to be computed. This process is usually performed on the ground, with commands subsequently transmitted to the spacecraft. In contrast, the goal of autonomous guidance and navigation is to perform this re-optimization on board without reliance on ground support. Indirect methods are particularly well-suited for onboard trajectory optimization due to their efficiency; however, they are characterized by a small region of convergence, meaning that the optimization algorithm requires a precise initial guess. This thesis focuses on studying and characterizing the region of convergence of an indirect method for low-thrust, fuel-optimal trajectory optimization when deviations from the nominal trajectory occur. The initial guess for this optimization is derived from the solution of the nominal trajectory. Additionally, Deep Neural Networks are trained to assess their performance in predicting convergence behavior given a new deviated spacecraft state, which includes position, velocity, and propellant mass. To approximate the region of convergence, the nominal state is perturbed multiple times along its trajectory. The resulting convergence behavior and solutions are then analyzed across various levels of perturbation. The retrieved solutions are organized into databases that will be used to train the Deep Neural Network models. The performance of these models is evaluated on unseen data to determine their ability to generalize the relationships within the dataset. In the mission scenario examined, a region of convergence is approximated and characterized, yielding valuable insights into how perturbations influence the re-optimization process. The Deep Neural Network model tasked with a binary classification achieved satisfactory results in predicting convergence behavior. Conversely, the regression model struggled to predict the solutions of the re-optimization process with sufficient accuracy. However, it may still provide a useful initial guess that could lead to faster convergence in the re-optimization process.
MANNOCCHI, ALESSANDRA
ING - Scuola di Ingegneria Industriale e dell'Informazione
11-dic-2024
2023/2024
L'ambito della guida e della navigazione autonoma ha suscitato particolare interesse nella ricerca contemporanea, in particolare per quanto riguarda le missioni interplanetarie dei CubeSat. Quando si verificano deviazioni da una traiettoria nominale, dovute a fattori quali la mancata accensione del propulsore o le perturbazioni non modellate, è necessario calcolare una nuova traiettoria nominale. Questo processo viene solitamente eseguito a terra, con comandi successivamente trasmessi al veicolo spaziale. Al contrario, l'obiettivo della guida e della navigazione autonoma è di eseguire questa ri-ottimizzazione a bordo senza fare affidamento sul supporto da terra. I metodi indiretti sono particolarmente adatti per l'ottimizzazione della traiettoria a bordo grazie alla loro efficienza computazionale; tuttavia, sono caratterizzati da una piccola regione di convergenza, il che significa che l'algoritmo di ottimizzazione richiede una precisa guess iniziale. Questa tesi si concentra sullo studio e sulla caratterizzazione della regione di convergenza di un metodo indiretto per l'ottimizzazione della traiettoria a bassa spinta e ottimale per il consumo di carburante quando si verificano deviazioni dalla traiettoria nominale. La guess iniziale per questa ottimizzazione è derivata dalla soluzione della traiettoria nominale. Inoltre, le reti neurali profonde sono addestrate per valutare le loro prestazioni nel prevedere il comportamento di convergenza dato un nuovo stato deviato del veicolo spaziale, il quale include posizione, velocità e massa del propellente. Per approssimare la regione di convergenza, lo stato nominale viene perturbato più volte lungo la sua traiettoria. Il comportamento di convergenza risultante e le soluzioni vengono quindi analizzati su vari livelli di perturbazione. Le soluzioni recuperate vengono organizzate quindi in database che verranno utilizzati per addestrare i modelli di reti neurali profonde. Le prestazioni di questi modelli vengono valutate su nuovi dati per determinare la loro capacità di generalizzare le relazioni all'interno del set di dati. Nello scenario di missione esaminato, una regione di convergenza viene approssimata e caratterizzata, producendo preziose informazioni su come le perturbazioni influenzano il processo di ri-ottimizzazione. Il modello di rete neurale profonda incaricato di una classificazione binaria ha ottenuto risultati soddisfacenti nel prevedere il comportamento di convergenza. Al contrario, il modello di regressione ha mostrato dei limiti nel prevedere le soluzioni del processo di riottimizzazione con sufficiente accuratezza. Tuttavia, questo modello potrebbe comunque fornire una guess iniziale utile che potrebbe portare ad una convergenza più rapida nel processo di riottimizzazione.
File allegati
File Dimensione Formato  
2024_12_Biella.pdf

solo utenti autorizzati a partire dal 13/11/2025

Descrizione: Testo della tesi
Dimensione 3.05 MB
Formato Adobe PDF
3.05 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/230459