This thesis investigates CO₂ liquefaction systems for ship-based transport within the framework of carbon capture and storage (CCS), focusing on thermodynamics, process design, and economic perspectives. The objective is to analyze and compare different solutions to identify the most cost-effective option in terms of the Levelized Cost of Liquefaction (LCOL). Three promising configurations were analyzed: an open system like the Linde-Hampson, a closed system known as Vapor Compression, and a hybrid solution, the Precooled Linde-Hampson. Each scheme was modeled and optimized using Aspen Plus integrated with MATLAB to evaluate thermodynamic performance and energy consumption. To understand the effect of liquefaction delivery pressure on performance, the three configurations were analyzed across a pressure range from the triple point (-56.56 °C, 5.18 bar) to the critical point (30.98 °C, 73.77 bar). Although higher thermodynamic efficiency was observed for systems operating at high pressures (45-55 bar), the need to align liquefaction delivery conditions with those required for ship-based tank transport led to a focus on low (6 bar) and medium (20 bar) pressures for the economic analysis, which required CAPEX and OPEX estimates. Based on them, LCOL was calculated for each configuration, showing that at 6 bar, the Precooled Linde-Hampson system is particularly valuable due to lower operating costs, achieving an LCOL of 22.70 €/tonCO₂. At 20 bar, the Vapor Compression system proves most cost-effective, with the lowest LCOL of 19.70 €/tonCO₂, due to its simplicity and moderate energy consumption.
Questa tesi studia i sistemi di liquefazione della CO₂ per il trasporto via nave nel contesto della cattura e stoccaggio del carbonio (CCS), con un focus sul comportamento termodinamico, sulle soluzioni impiantistiche e sulla prospettiva economica. L’obiettivo è analizzare e confrontare diverse soluzioni per identificare l’opzione più conveniente in termini di costo livellato della liquefazione (LCOL). Sono state analizzate tre configurazioni promettenti: un Open System come il Linde-Hampson, un Closed System noto come Vapor Compression e una soluzione ibrida, il Precooled Linde-Hampson. Ogni configurazione è stata modellata e ottimizzata utilizzando Aspen Plus integrato con MATLAB per valutarne le prestazioni termodinamiche e il consumo energetico. Per comprendere l’effetto della pressione di liquefazione della CO₂ sulle prestazioni, le tre configurazioni sono state analizzate in un intervallo di pressioni che va dal punto triplo (-56.56 °C, 5.18 bar) al punto critico (30.98 °C, 73.77 bar). Sebbene sia stata osservata una maggiore efficienza termodinamica per i sistemi operanti ad alte pressioni (45-55 bar), la necessità di allineare le condizioni di consegna della CO₂ liquefatta con quelle richieste per il trasporto in nave ha portato a concentrarsi su pressioni basse (6 bar) e medie (20 bar) per l’analisi economica, basata sulle stime di CAPEX e OPEX. Sulla base di questi, è stato calcolato l’LCOL per ciascuna configurazione, mostrando che a 6 bar il sistema Precooled Linde-Hampson risulta particolarmente vantaggioso grazie ai costi operativi più bassi, raggiungendo un LCOL di 22.70 €/tonCO₂. A 20 bar, il sistema Vapor Compression si dimostra il più conveniente, con un LCOL di 19.70 €/tonCO₂, grazie alla sua semplicità e al consumo energetico moderato.
Technical and economic analysis of CO2 liquefaction systems
Brandi, Tommaso
2023/2024
Abstract
This thesis investigates CO₂ liquefaction systems for ship-based transport within the framework of carbon capture and storage (CCS), focusing on thermodynamics, process design, and economic perspectives. The objective is to analyze and compare different solutions to identify the most cost-effective option in terms of the Levelized Cost of Liquefaction (LCOL). Three promising configurations were analyzed: an open system like the Linde-Hampson, a closed system known as Vapor Compression, and a hybrid solution, the Precooled Linde-Hampson. Each scheme was modeled and optimized using Aspen Plus integrated with MATLAB to evaluate thermodynamic performance and energy consumption. To understand the effect of liquefaction delivery pressure on performance, the three configurations were analyzed across a pressure range from the triple point (-56.56 °C, 5.18 bar) to the critical point (30.98 °C, 73.77 bar). Although higher thermodynamic efficiency was observed for systems operating at high pressures (45-55 bar), the need to align liquefaction delivery conditions with those required for ship-based tank transport led to a focus on low (6 bar) and medium (20 bar) pressures for the economic analysis, which required CAPEX and OPEX estimates. Based on them, LCOL was calculated for each configuration, showing that at 6 bar, the Precooled Linde-Hampson system is particularly valuable due to lower operating costs, achieving an LCOL of 22.70 €/tonCO₂. At 20 bar, the Vapor Compression system proves most cost-effective, with the lowest LCOL of 19.70 €/tonCO₂, due to its simplicity and moderate energy consumption.File | Dimensione | Formato | |
---|---|---|---|
TESI-BRANDI-DEFINITIVA.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi di laurea magistrale
Dimensione
8.01 MB
Formato
Adobe PDF
|
8.01 MB | Adobe PDF | Visualizza/Apri |
EXECUTIVE-SUMMARY-BRANDI-DEFINITIVA.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive summary della tesi
Dimensione
5.72 MB
Formato
Adobe PDF
|
5.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230574