Autonomous navigation in off-road environments presents significant challenges, particularly in scenarios where GNSS (Global Navigation Satellite System) signals are degraded or unavailable. This thesis addresses the critical issue of reliable localization and mapping in such challenging conditions by developing a SLAM (Simultaneous Localization and Mapping) algorithm. To enhance robustness, the proposed SLAM algorithm integrates measurements from multiple sensors and employs various localization methods. The study begins with a comprehensive overview of existing SLAM solutions, with a particular focus on Loop Closure Detection (LCD). The core of the research is the implementation of a SLAM system designed for off-road autonomous vehicles operating in GNSS-Degraded Environments. The proposed SLAM system is realized as a pose graph framework that integrates an odometry scheme, a Loop Closure Detection pipeline, and other essential components. Experimental results prove that the proposed algorithm enhance the vehicle localization accuracy, and, consequently, map consistency. Future research should focus on further refining the proposed localization strategies and exploring the application of this SLAM algorithm in other large-scale GNSS-degraded environments.
La navigazione autonoma in ambienti fuoristrada presenta sfide significative, in particolare in scenari in cui il segnale GNSS (Global Navigation Satellite System) è degradato o non disponibile. Questa tesi affronta il critico problema dell'affidabilità della localizzazione e della mappatura sviluppando, in tali difficili condizioni, un algoritmo SLAM (Simultaneous Localization and Mapping). Per migliorare la robustezza, l'algoritmo SLAM proposto integra le misurazioni provenienti da più sensori e impiega vari metodi di localizzazione. Lo studio inizia con una panoramica completa delle soluzioni SLAM esistenti, con un focus particolare sulla Rilevazione di Chiusura di Ciclo (Loop Closure Detection - LCD). Il cuore della ricerca è l'implementazione di un sistema SLAM progettato per veicoli autonomi fuoristrada operanti in ambienti con segnali GNSS degradati. Il sistema SLAM proposto è realizzato come un framework di grafi di posa che integra uno schema di odometria, una pipeline di Rilevazione di Chiusura di Ciclo e altri componenti essenziali. I risultati sperimentali dimostrano che l'algoritmo proposto migliora la precisione della localizzazione del veicolo e, di conseguenza, la coerenza della mappa. Le ricerche future dovrebbero concentrarsi su un ulteriore affinamento delle strategie di localizzazione proposte ed esplorare l'applicazione di questo algoritmo SLAM in altri ambienti su larga scala con segnali GNSS degradati.
Development of a SLAM algorithm for an off-road autonomous vehicle operating in GNSS-degraded enviroments
FURIA, MATTEO
2023/2024
Abstract
Autonomous navigation in off-road environments presents significant challenges, particularly in scenarios where GNSS (Global Navigation Satellite System) signals are degraded or unavailable. This thesis addresses the critical issue of reliable localization and mapping in such challenging conditions by developing a SLAM (Simultaneous Localization and Mapping) algorithm. To enhance robustness, the proposed SLAM algorithm integrates measurements from multiple sensors and employs various localization methods. The study begins with a comprehensive overview of existing SLAM solutions, with a particular focus on Loop Closure Detection (LCD). The core of the research is the implementation of a SLAM system designed for off-road autonomous vehicles operating in GNSS-Degraded Environments. The proposed SLAM system is realized as a pose graph framework that integrates an odometry scheme, a Loop Closure Detection pipeline, and other essential components. Experimental results prove that the proposed algorithm enhance the vehicle localization accuracy, and, consequently, map consistency. Future research should focus on further refining the proposed localization strategies and exploring the application of this SLAM algorithm in other large-scale GNSS-degraded environments.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Matteo_Furia.pdf
non accessibile
Descrizione: Development of a SLAM Algorithm for an Off-road Autonomous Vehicle operating in GNSS-Degraded Environments
Dimensione
46.82 MB
Formato
Adobe PDF
|
46.82 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary__Matteo_Furia.pdf
non accessibile
Descrizione: Executive summary of Development of a SLAM Algorithm for an Off-road Autonomous Vehicle operating in GNSS-Degraded Environments
Dimensione
5.02 MB
Formato
Adobe PDF
|
5.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230704