The International Space Station (ISS) orbits Earth at speeds that defy gravity, exposing astronauts to microgravity. Upon entering this environment, the cardiovascular system undergoes several structural and functional changes, including reductions in heart size and contractile force. This research aimed to develop a robust methodology for evaluating changes in cardiac electromechanical activity during and after long duration (6–12 months) spaceflight aboard the ISS. Seismocardiogram (SCG) and electrocardiogram (ECG) signals were acquired from 18 cosmonauts during five minute spontaneous breathing sessions conducted pre-, in-, and post-spaceflight. These signals were processed to compute SCG-derived cardiac mechanical indices, complemented by selected ECG-derived parameters, including the pre-ejection period (PEP), left ventricular ejection time (LVET), Bazett-corrected QT (QTc), and RR intervals. Results revealed a significant increase in LVET, QTc, and RR throughout the mission, alongside a decrease in PEP compared to pre-flight values (Skillings–Mack test, p < 0.05; Wilcoxon signed-rank test with Hochberg correction). Upon re-entry, the restoration of gravity caused an acute reversal in LVET and RR, both decreasing compared to the last month in flight, while QTc exhibited further prolongation (Skillings–Mack test, p < 0.05; Wilcoxon signed-rank test with Bonferroni correction). Post-flight recovery was observed in all parameters except QTc, which remained elevated compared to pre-flight, suggesting a persistent alteration in ventricular repolarization (Friedman test, p < 0.05; Wilcoxon signed-rank test with Bonferroni correction). These findings demonstrate the cardiovascular deconditioning induced by long-duration spaceflight and highlight the importance of measures aimed at counteracting the observed modifications and their lingering effects on cardiac function to preserve astronauts’ health.
La Stazione Spaziale Internazionale (ISS) orbita intorno alla Terra a velocità tali da controbilanciare la forza gravitazionale, esponendo gli astronauti a una condizione di microgravità. Nello spazio, il sistema cardiovascolare subisce modifiche strutturali e funzionali, inclusa una riduzione delle dimensioni cardiache e della forza contrattile. Lo scopo di questo studio è sviluppare un metodo per l’analisi delle variazioni nell’attività elettromeccanica cardiaca durante e a seguito di missioni spaziali di lunga durata (6–12 mesi) a bordo della ISS. Sono stati acquisiti segnali di sismocardiografia (SCG) ed elettrocardiografia (ECG) in 18 cosmonauti, durante sessioni di respiro spontaneo della durata di cinque minuti, effettuate prima, durante e dopo il volo. Dai segnali acquisiti sono stati estratti indici meccanici cardiaci e parametri elettrofisiologici, tra cui il periodo di pre-eiezione (PEP), il tempo di eiezione del ventricolo sinistro (LVET), l’intervallo QT corretto secondo la formula di Bazett (QTc) e gli intervalli RR. Durante la missione spaziale, è stato osservato un aumento significativo di LVET, QTc e RR, associato a una riduzione di PEP rispetto ai valori basali prima del volo (Skillings–Mack test, p < 0.05; Wilcoxon signed-rank test con correzione di Hochberg). Al rientro sulla Terra, il ripristino del campo gravitazionale ha indotto variazioni inverse per LVET e RR, entrambi ridotti rispetto ai valori nell’ultimo mese di volo; al contrario, il QTc è aumentato ulteriormente (Skillings Mack test, p < 0.05; Wilcoxon signed-rank test con correzione di Bonferroni). Durante il recupero post-volo, tutti i parametri sono tornati ai valori basali tranne il QTc, che è rimasto prolungato, suggerendo un’alterazione persistente nella ripolarizzazione ventricolare (Friedman test, p < 0.05; Wilcoxon signed-rank test con correzione di Bonferroni). Questi risultati dimostrano il decondizionamento cardiovascolare indotto da voli spaziali di lunga durata e sottolineano l'importanza di adottare misure volte a contrastare le modifiche osservate e i loro effetti persistenti, al fine di preservare la salute degli astronauti.
Assessing cardiovascular adaptation to microgravity: a seismocardiographic study in long-duration spaceflight
Aghilar, Ludovica Mariantonia
2024/2025
Abstract
The International Space Station (ISS) orbits Earth at speeds that defy gravity, exposing astronauts to microgravity. Upon entering this environment, the cardiovascular system undergoes several structural and functional changes, including reductions in heart size and contractile force. This research aimed to develop a robust methodology for evaluating changes in cardiac electromechanical activity during and after long duration (6–12 months) spaceflight aboard the ISS. Seismocardiogram (SCG) and electrocardiogram (ECG) signals were acquired from 18 cosmonauts during five minute spontaneous breathing sessions conducted pre-, in-, and post-spaceflight. These signals were processed to compute SCG-derived cardiac mechanical indices, complemented by selected ECG-derived parameters, including the pre-ejection period (PEP), left ventricular ejection time (LVET), Bazett-corrected QT (QTc), and RR intervals. Results revealed a significant increase in LVET, QTc, and RR throughout the mission, alongside a decrease in PEP compared to pre-flight values (Skillings–Mack test, p < 0.05; Wilcoxon signed-rank test with Hochberg correction). Upon re-entry, the restoration of gravity caused an acute reversal in LVET and RR, both decreasing compared to the last month in flight, while QTc exhibited further prolongation (Skillings–Mack test, p < 0.05; Wilcoxon signed-rank test with Bonferroni correction). Post-flight recovery was observed in all parameters except QTc, which remained elevated compared to pre-flight, suggesting a persistent alteration in ventricular repolarization (Friedman test, p < 0.05; Wilcoxon signed-rank test with Bonferroni correction). These findings demonstrate the cardiovascular deconditioning induced by long-duration spaceflight and highlight the importance of measures aimed at counteracting the observed modifications and their lingering effects on cardiac function to preserve astronauts’ health.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Aghilar_ExecutiveSummary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive summary
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri |
2024_12_Aghilar_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo tesi
Dimensione
4.46 MB
Formato
Adobe PDF
|
4.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230721