This thesis presents the design, analysis, and testing of the Zero-Gravity Ultrasonic Rammer for Rock Excavation & Notation (Z-GURREN), an ultrasonic drill intended for lowgravity environments, aimed at enabling rock sampling and in-situ measurements on small celestial bodies such as asteroids and comets. The development of Z-GURREN addresses critical challenges in extra-terrestrial drilling, including size, power constraints, and the need for adaptability in microgravity. This study applies Finite Element Analysis to model the interactions within key components of the drill system, specifically focusing on the transducer, horn-mass, and mass-bit-terrain assemblies. Experimental testing was conducted to validate the theoretical predictions and to refine the mechanical and electronic design. Preliminary results demonstrates alignment between simulated and real-world performance. The results confirm the potential of Z-GURREN as a compact, efficient solution for extra-terrestrial sampling missions. Future work is recommended to expand the testing campaign, prioritizing the completion of tests not yet conducted, while also focusing on improvements in power efficiency and the integration of rotational actuation to enhance penetration depth capabilities. This research presents a novel, effective approach for planetary exploration and could significantly advance sampling technologies for CubeSat-class missions

Questa tesi presenta la progettazione, analisi e prove sperimentali del Zero-Gravity Ultrasonic Rammer for Rock Excavation & Notation (Z-GURREN), un trapano ultrasonico destinato ad ambienti a bassa gravità, progettato per consentire il campionamento di rocce e misurazioni in loco su piccoli corpi celesti come asteroidi e comete. Lo sviluppo di Z-GURREN affronta sfide fondamentali per la perforazione extraterrestre, come le limitazioni di dimensioni e di potenza, oltre alla necessità di adattabilità in condizioni di microgravità. Questo studio applica l’Analisi agli Elementi Finiti per modellare le interazioni tra i componenti principali del sistema di perforazione, concentrandosi in particolare sul trasduttore, sull’interfaccia massa-trasduttore e sull’insieme massa-punta-terreno. Sono stati condotti test sperimentali per validare le previsioni teoriche e per perfezionare il design meccanico ed elettronico, con risultati preliminari che mostrano una buona corrispondenza tra le prestazioni simulate e quelle reali. I risultati confermano il potenziale di Z-GURREN come soluzione compatta ed efficiente per missioni di campionamento extraterrestri. Si raccomanda un’estensione della campagna di test in futuro, concentrandosi prima sul completamento dei test non ancora svolti e poi sul miglioramento dell’efficienza energetica e sull’integrazione di un’azione rotativa per aumentare le capacità di penetrazione. Questa ricerca presenta un approccio innovativo ed efficace per l’esplorazione planetaria e potrebbe rappresentare un significativo avanzamento nelle tecnologie di campionamento per missioni di classe CubeSat.

Design and testing of Z-GURREN (zero-gravity ultrasonic rammer for rock excavation and notation)

Sapuppo, Andrea
2023/2024

Abstract

This thesis presents the design, analysis, and testing of the Zero-Gravity Ultrasonic Rammer for Rock Excavation & Notation (Z-GURREN), an ultrasonic drill intended for lowgravity environments, aimed at enabling rock sampling and in-situ measurements on small celestial bodies such as asteroids and comets. The development of Z-GURREN addresses critical challenges in extra-terrestrial drilling, including size, power constraints, and the need for adaptability in microgravity. This study applies Finite Element Analysis to model the interactions within key components of the drill system, specifically focusing on the transducer, horn-mass, and mass-bit-terrain assemblies. Experimental testing was conducted to validate the theoretical predictions and to refine the mechanical and electronic design. Preliminary results demonstrates alignment between simulated and real-world performance. The results confirm the potential of Z-GURREN as a compact, efficient solution for extra-terrestrial sampling missions. Future work is recommended to expand the testing campaign, prioritizing the completion of tests not yet conducted, while also focusing on improvements in power efficiency and the integration of rotational actuation to enhance penetration depth capabilities. This research presents a novel, effective approach for planetary exploration and could significantly advance sampling technologies for CubeSat-class missions
VAGHI, SAMUELE
ING - Scuola di Ingegneria Industriale e dell'Informazione
11-dic-2024
2023/2024
Questa tesi presenta la progettazione, analisi e prove sperimentali del Zero-Gravity Ultrasonic Rammer for Rock Excavation & Notation (Z-GURREN), un trapano ultrasonico destinato ad ambienti a bassa gravità, progettato per consentire il campionamento di rocce e misurazioni in loco su piccoli corpi celesti come asteroidi e comete. Lo sviluppo di Z-GURREN affronta sfide fondamentali per la perforazione extraterrestre, come le limitazioni di dimensioni e di potenza, oltre alla necessità di adattabilità in condizioni di microgravità. Questo studio applica l’Analisi agli Elementi Finiti per modellare le interazioni tra i componenti principali del sistema di perforazione, concentrandosi in particolare sul trasduttore, sull’interfaccia massa-trasduttore e sull’insieme massa-punta-terreno. Sono stati condotti test sperimentali per validare le previsioni teoriche e per perfezionare il design meccanico ed elettronico, con risultati preliminari che mostrano una buona corrispondenza tra le prestazioni simulate e quelle reali. I risultati confermano il potenziale di Z-GURREN come soluzione compatta ed efficiente per missioni di campionamento extraterrestri. Si raccomanda un’estensione della campagna di test in futuro, concentrandosi prima sul completamento dei test non ancora svolti e poi sul miglioramento dell’efficienza energetica e sull’integrazione di un’azione rotativa per aumentare le capacità di penetrazione. Questa ricerca presenta un approccio innovativo ed efficace per l’esplorazione planetaria e potrebbe rappresentare un significativo avanzamento nelle tecnologie di campionamento per missioni di classe CubeSat.
File allegati
File Dimensione Formato  
2024_12_Sapuppo.pdf

accessibile in internet per tutti

Descrizione: Thesis
Dimensione 16.85 MB
Formato Adobe PDF
16.85 MB Adobe PDF Visualizza/Apri
2024_12_Sapuppo_ExecutiveSummary.pdf

accessibile in internet per tutti

Descrizione: Executive Summary
Dimensione 8.94 MB
Formato Adobe PDF
8.94 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/230781