The increasing urgency to reduce greenhouse gas emissions has intensified research into sustainable fuel alternatives, particularly for marine engines. This thesis explores the viability of ammonia as an alternative fuel for internal combustion engines in the maritime sector, focusing on its application within dual-fuel systems. Ammonia, being a zero-carbon fuel, offers significant advantages by reducing CO₂ emissions. However, its practical use in ICEs is complicated by ammonia’s challenging combustion characteristics, such as high ignition temperature and low flame speed. The research presented here combines experimental data and the use of advanced computational fluid dynamics (CFD) modelling to explore ammonia and diesel sprays and analyzing combustion under various configurations. The numerical methodology is based on Eulerian-Lagrangian simulations, conducted using Politecnico di Milano’s code library LibICE, based on OpenFOAM® technology. A variety of spray breakup models, including the Reitz-KHRT, Reitz-Diwakar, and Pilch-Erdman models, were evaluated and calibrated against experimental data for non-reacting sprays of both diesel and ammonia. Furthermore, an alternative approach was introduced, using the RosinRammler distribution alone to model and calibrate fuel sprays. While these methods provided an effective framework for simulating fuel injection, they demonstrated limited sensitivity to ambient gas conditions, constraining their predictive capability and leading to a substantial dependence on experimental data when applied to novel conditions. Regarding diesel-piloted ammonia dual-fuel combustion, simulations are performed replicating experiments of three different spray injection schemes. Simulated results are evaluated against experimental data, primarily through visual comparisons and by assessing the occurrence of successful ignition or misfire. The simulations tend to predict combustion too readily, showing a successful ignition in almost any conditions, inconsistent with experimental observation. Nonetheless, certain parameters, such as the burn rate and heat release rate, provide valuable insights into combustion progression, potentially serving as criteria in future models to improve the prediction of successful ignition or misfire events.
L'urgenza crescente di ridurre le emissioni di gas serra ha intensificato la ricerca su combustibili alternativi sostenibili. Questa tesi studia la fattibilità tecnica dell'ammoniaca come combustibile alternativo per motori a combustione interna marini, con particolare attenzione alla sua applicazione nei sistemi a doppio combustibile. L’ammoniaca, in quanto combustibile a zero emissioni di carbonio, offre vantaggi significativi riducendo le emissioni di CO₂. Tuttavia, il suo impiego pratico nei motori a combustione interna è complesso a causa delle sfide legate alle sue caratteristiche di combustione, come l’elevata temperatura di accensione e la bassa velocità di fiamma. La ricerca qui presentata combina dati sperimentali e l’uso di modelli avanzati di fluidodinamica computazionale (CFD) per esplorare getti di ammoniaca e diesel e analizzare la combustione in diverse configurazioni. La metodologia numerica è basata su simulazioni Euleriane-Lagrangiane, eseguite utilizzando la libreria LibICE del Politecnico di Milano, sviluppata sulla tecnologia OpenFOAM®. Una varietà di modelli di rottura del getto, tra cui Reitz-KHRT, ReitzDiwakar e Pilch-Erdman, è stata valutata e calibrata rispetto ai dati sperimentali per getti non reattivi. Inoltre, è stato introdotto un approccio alternativo che utilizza la sola distribuzione di Rosin-Rammler per modellare e calibrare gli spray di combustibile. Sebbene questi metodi abbiano fornito una struttura efficace per simulare l'iniezione di combustibile, hanno dimostrato una sensibilità limitata alle condizioni del gas ambiente, riducendo così la loro capacità predittiva e portando a una dipendenza sostanziale dai dati empirici. Per quanto riguarda la combustione a doppio combustibile ammoniaca-diesel, sono state effettuate simulazioni che replicano esperimenti di tre diversi schemi di iniezione. I risultati simulati sono stati confrontati con i dati sperimentali, valutando la riuscita dell’accensione. Le simulazioni tendono a prevedere una combustione troppo facilmente, mostrando accensioni in quasi tutte le condizioni, in contrasto con quanto osservato sperimentalmente. Tuttavia, alcuni parametri, come il la velocità di combustione e di rilascio del calore, rivelano preziose informazioni sul proseguo della combustione e potrebbero servire come criteri in modelli futuri per migliorare la previsione dell’accensione.
Injection and combustion simulations of diesel-piloted ammonia in marine internal combustion engines
Rindler, David
2023/2024
Abstract
The increasing urgency to reduce greenhouse gas emissions has intensified research into sustainable fuel alternatives, particularly for marine engines. This thesis explores the viability of ammonia as an alternative fuel for internal combustion engines in the maritime sector, focusing on its application within dual-fuel systems. Ammonia, being a zero-carbon fuel, offers significant advantages by reducing CO₂ emissions. However, its practical use in ICEs is complicated by ammonia’s challenging combustion characteristics, such as high ignition temperature and low flame speed. The research presented here combines experimental data and the use of advanced computational fluid dynamics (CFD) modelling to explore ammonia and diesel sprays and analyzing combustion under various configurations. The numerical methodology is based on Eulerian-Lagrangian simulations, conducted using Politecnico di Milano’s code library LibICE, based on OpenFOAM® technology. A variety of spray breakup models, including the Reitz-KHRT, Reitz-Diwakar, and Pilch-Erdman models, were evaluated and calibrated against experimental data for non-reacting sprays of both diesel and ammonia. Furthermore, an alternative approach was introduced, using the RosinRammler distribution alone to model and calibrate fuel sprays. While these methods provided an effective framework for simulating fuel injection, they demonstrated limited sensitivity to ambient gas conditions, constraining their predictive capability and leading to a substantial dependence on experimental data when applied to novel conditions. Regarding diesel-piloted ammonia dual-fuel combustion, simulations are performed replicating experiments of three different spray injection schemes. Simulated results are evaluated against experimental data, primarily through visual comparisons and by assessing the occurrence of successful ignition or misfire. The simulations tend to predict combustion too readily, showing a successful ignition in almost any conditions, inconsistent with experimental observation. Nonetheless, certain parameters, such as the burn rate and heat release rate, provide valuable insights into combustion progression, potentially serving as criteria in future models to improve the prediction of successful ignition or misfire events.| File | Dimensione | Formato | |
|---|---|---|---|
|
2024_12_Rindler_Tesi.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
10.97 MB
Formato
Adobe PDF
|
10.97 MB | Adobe PDF | Visualizza/Apri |
|
2024_12_Rindler_Executive_Summary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230790