This analysis examines potential alternatives to polytetrafluoroethylene (PTFE) as a selflubricating charge in a polyamide 6,6 (PA66) matrix. Increasing regulatory restrictions and sustainability goals command the search of alternative additives to PTFE, despite its excellent tribological properties. The study focuses on a wide range of charges including polymers, mineral fillers and nanostructured charges, and evaluates both their tribological performance and their impact on the mechanical and thermal properties of the PA66 matrix. The main objective is to identify a compound that will replicate the performance of PTFE in terms of coefficient of friction and wear resistance, simultaneously ensuring that other matrix properties are maintained. The methodology adopted involves tribological tests carried out under controlled conditions, allowing the dynamic coefficient of friction to be monitored along a 13.6 km track and the volume of wear to be evaluated subsequently to the test. The tests are performed using a pin-on-disk tribometer with a stainless steel counterpart. Thermal, mechanical and microstructural characterization is also performed to evaluate the influence of additives on the overall properties of the compound. The results show that several formulations, particularly those based on ultra-high molecular weight polyethylene (UHMWPE) and carbon nanotubes (CNTs), have significant potential as alternatives to PTFE. Self-lubrication mechanisms are analyzed, emphasizing the importance of transfer film formation to improve tribological performance. The study also highlights the influence of other parameters on tribological performance such as additive composition, presence of compatibilizers, temperature and speed , paving the way for further optimization. The work provides a comprehensive evaluation of alternatives to PTFE charges in PA66, identifies promising candidates for self-lubricating applications, and opens new perspectives for the development of more sustainable materials.
L’analisi esplora potenziali alternative al politetrafluoroetilene (PTFE) come additivi autolubrificanti in una matrice di poliammide 6,6 (PA66). La crescente pressione normativa e gli obiettivi di sostenibilità impongono la ricerca di materiali alternativi al PTFE, nonostante le sue eccellenti proprietà tribologiche. Lo studio si concentra su un’ampia gamma di additivi, tra cui polimeri, cariche minerali e cariche nanostrutturate, valutandone le prestazioni tribologiche e l’impatto sulle proprietà meccaniche e termiche della matrice di PA66. L’obiettivo principale è identificare un composto che replichi le prestazioni del PTFE in termini di coefficiente di attrito e resistenza all’usura, garantendo al contempo di preservare altre proprietà della matrice. La metodologia adottata prevede test tribologici condotti in condizioni controllate, permettendo il monitoraggio del coefficiente d’attrito dinamico lungo una traccia di 13.6 km e la successiva valutazione del volume d’usura. I test vengono eseguiti con un tribometro pin on disk, adoperando una controparte in acciaio inossidabile. Vengono inoltre compiute caratterizzazioni termiche, meccaniche e microstrutturali per valutare l’influenza degli additivi sulle proprietà complessive del composto. I risultati evidenziano che diverse formulazioni, in particolare quelle a base di polietilene ad altissimo peso molecolare (UHMWPE) e nanotubi di carbonio (CNT), mostrano un potenziale significativo come alternative al PTFE. Vengono analizzati i meccanismi di autolubrificazione, enfatizzando l’importanza della formazione di un film di trasferimento per potenziare le prestazioni tribologiche. Lo studio evidenzia inoltre l’influenza di parametri come la composizione, la presenza di compatibilizzanti, la temperatura e la velocità sul rendimento tribologico, aprendo la strada a ulteriori ottimizzazioni. La tesi fornisce una valutazione completa delle cariche alternative al PTFE in PA66, identificando promettenti candidati per applicazioni autolubrificanti e aprendo nuove prospettive per lo sviluppo di materiali più sostenibili.
Formulation and characterization of PA66-based self-lubricating compounds: development of innovative alternatives to PTFE
Ferretti, Riccardo
2023/2024
Abstract
This analysis examines potential alternatives to polytetrafluoroethylene (PTFE) as a selflubricating charge in a polyamide 6,6 (PA66) matrix. Increasing regulatory restrictions and sustainability goals command the search of alternative additives to PTFE, despite its excellent tribological properties. The study focuses on a wide range of charges including polymers, mineral fillers and nanostructured charges, and evaluates both their tribological performance and their impact on the mechanical and thermal properties of the PA66 matrix. The main objective is to identify a compound that will replicate the performance of PTFE in terms of coefficient of friction and wear resistance, simultaneously ensuring that other matrix properties are maintained. The methodology adopted involves tribological tests carried out under controlled conditions, allowing the dynamic coefficient of friction to be monitored along a 13.6 km track and the volume of wear to be evaluated subsequently to the test. The tests are performed using a pin-on-disk tribometer with a stainless steel counterpart. Thermal, mechanical and microstructural characterization is also performed to evaluate the influence of additives on the overall properties of the compound. The results show that several formulations, particularly those based on ultra-high molecular weight polyethylene (UHMWPE) and carbon nanotubes (CNTs), have significant potential as alternatives to PTFE. Self-lubrication mechanisms are analyzed, emphasizing the importance of transfer film formation to improve tribological performance. The study also highlights the influence of other parameters on tribological performance such as additive composition, presence of compatibilizers, temperature and speed , paving the way for further optimization. The work provides a comprehensive evaluation of alternatives to PTFE charges in PA66, identifies promising candidates for self-lubricating applications, and opens new perspectives for the development of more sustainable materials.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Ferretti_ExecutiveAbstract.pdf
non accessibile
Descrizione: Executive abstract della tesi
Dimensione
944.29 kB
Formato
Adobe PDF
|
944.29 kB | Adobe PDF | Visualizza/Apri |
2024_12_Ferretti_Tesi.pdf
non accessibile
Descrizione: Testo principale della tesi
Dimensione
12.41 MB
Formato
Adobe PDF
|
12.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230843