In November 2018 the European Commission presented a long-term strategic vision to reduce greenhouse gas (GHG) emissions and a portfolio of options was explored to emphasize that, based on current technological solutions, it is possible to move to net zero GHG emissions by 2050. Considering the wide use of conventional ammonia and its impact, purple ammonia can be considered a valid solution for a more eco-friendly chemical production. This work examines a nuclear-powered ammonia synthesis plant. Specifically, it employs nuclear energy from fourth-generation micro modular reactors. By using helium as a coolant and a heat extraction medium, they can generate thermal energy at high temperatures which can be converted into electrical energy using a turbine. This allows them to replace fossil fuels in existing plants. They thus present a novel strategy for producing nuclear power in a safe and ecologically responsible way. The aim of this thesis is to evaluate the economic and environmental impacts of producing ammonia from H2 and N2 by using those reactors. The study compares quench, indirect and Topsoe cooling system typologies, highlighting their positive impact on lowering greenhouse gas emissions but reducing the energy efficiency. The results show that the purple ammonia synthesis plant offers significant environmental advantages over conventional plants, even though it is expensive to run. Significant decreases in CO2 emissions were noted, with values ranging from 0,33 to 0,5 kgCO2-eq/kgNH3, in contrast to traditional plants' 2,7 kgCO2-eq/kgNH3. According to the economic analysis, Topsoe (0,725 m3) has the best layout with a Levelized Cost of Ammonia Production (LCOP) of 1935,81 $/tNH3, while the worst scenario, the quench setup, has an LCOP of 2936,99 $/tNH3. As technology develops, these high values should decrease. The process economic competitiveness can be improved by lowering the CAPEX and adding more energy optimizations.
Nel novembre 2018 la Commissione europea ha presentato una visione strategica a lungo termine per ridurre le emissioni di gas serra (GHG), esplorando un portafoglio di opzioni per raggiungere zero emissioni nette di GHG entro il 2050 basandosi sulle attuali soluzioni tecnologiche. Considerando l'ampio utilizzo dell’ammoniaca convenzionale e il suo impatto ambientale, l'ammoniaca viola può essere considerata una valida soluzione per una produzione chimica più ecologica. Questo lavoro esamina un impianto di sintesi dell'ammoniaca alimentato da energia nucleare, in particolare proveniente da reattori micro modulari di quarta generazione. Questi reattori, che impiegano l'elio come refrigerante e mezzo di estrazione del calore, generano energia termica ad alte temperature, convertibile in energia elettrica tramite una turbina. Questo processo permette di sostituire i combustibili fossili negli impianti esistenti, presentando una nuova strategia per produrre energia nucleare in modo sicuro ed ecologicamente responsabile. La tesi valuta gli impatti economici e ambientali della produzione di ammoniaca da H2 e N2 utilizzando questi reattori. Lo studio confronta sistemi di raffreddamento tra cui quench, indirect e Topsoe, evidenziandone l'impatto positivo sia sulla riduzione delle emissioni di gas serra sia sul miglioramento dell'efficienza energetica. I risultati dimostrano che l'impianto di sintesi dell'ammoniaca viola offre vantaggi ambientali significativi rispetto agli impianti convenzionali nonostante i costi di gestione elevati. Sono state osservate significative riduzioni delle emissioni di CO2, con valori che vanno da 0,33 a 0,5 kgCO2- eq/kgNH3, rispetto ai 2,7 kgCO2-eq/kgNH3 degli impianti tradizionali. Secondo l'analisi economica, Topsoe (0,725 m3) presenta il miglior layout con un costo livellato di produzione dell'ammoniaca (LCOP) di 1935,81 $/tNH3, mentre lo scenario peggiore è dato dalla configurazione quench, con un LCOP di 2936,99 $/tNH3. Con lo sviluppo delle tecnologie, si prevede che questi costi elevati diminuiranno. La competitività economica del processo può migliorare riducendo i CAPEX e implementando ulteriori ottimizzazioni energetiche.
Robust techno-economic optimization and ecological footprint analysis of a purple ammonia synthesis plant
Crestini Nassini, Elena
2023/2024
Abstract
In November 2018 the European Commission presented a long-term strategic vision to reduce greenhouse gas (GHG) emissions and a portfolio of options was explored to emphasize that, based on current technological solutions, it is possible to move to net zero GHG emissions by 2050. Considering the wide use of conventional ammonia and its impact, purple ammonia can be considered a valid solution for a more eco-friendly chemical production. This work examines a nuclear-powered ammonia synthesis plant. Specifically, it employs nuclear energy from fourth-generation micro modular reactors. By using helium as a coolant and a heat extraction medium, they can generate thermal energy at high temperatures which can be converted into electrical energy using a turbine. This allows them to replace fossil fuels in existing plants. They thus present a novel strategy for producing nuclear power in a safe and ecologically responsible way. The aim of this thesis is to evaluate the economic and environmental impacts of producing ammonia from H2 and N2 by using those reactors. The study compares quench, indirect and Topsoe cooling system typologies, highlighting their positive impact on lowering greenhouse gas emissions but reducing the energy efficiency. The results show that the purple ammonia synthesis plant offers significant environmental advantages over conventional plants, even though it is expensive to run. Significant decreases in CO2 emissions were noted, with values ranging from 0,33 to 0,5 kgCO2-eq/kgNH3, in contrast to traditional plants' 2,7 kgCO2-eq/kgNH3. According to the economic analysis, Topsoe (0,725 m3) has the best layout with a Levelized Cost of Ammonia Production (LCOP) of 1935,81 $/tNH3, while the worst scenario, the quench setup, has an LCOP of 2936,99 $/tNH3. As technology develops, these high values should decrease. The process economic competitiveness can be improved by lowering the CAPEX and adding more energy optimizations.File | Dimensione | Formato | |
---|---|---|---|
2024_12_CRESTINI_Executive Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo executive summary
Dimensione
987.13 kB
Formato
Adobe PDF
|
987.13 kB | Adobe PDF | Visualizza/Apri |
2024_12_CRESTINI_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo tesi
Dimensione
5.4 MB
Formato
Adobe PDF
|
5.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230897