African countries are increasingly embracing hydropower as a renewable energy solution to meet rising energy demands sustainably. With plans to triple hydropower’s current capacity of 40 GW to 140 GW by 2050 through the addition of approximately 300 new hydropower projects, there is a pressing need to understand the environmental implications of this expansion. However, comprehensive assessments of hydropower’s interaction with African ecosystems, particularly regarding biodiversity, remain scarce in the literature. To address this gap, this thesis employs the African Hydropower Atlas, a database that merges both existing and proposed hydropower plants, within the global water-quality model DYNQUAL. This model simulates water discharge and temperature under three dam scenarios, namely natural condition, existing dams, and existing plus future dams, and across three future scenarios, SSP-RCP 2-6.0, 3-7.0, and 5-8.5, driven by five Global Climate Models (GCMs). To assess biodiversity risk, water temperature and discharge are used as key indicators for defining climate extreme thresholds within which African freshwater fish species can survive. The study calculates long-term averages of these variables, including maximum and minimum water temperatures and flow, and zero-flow weeks. Thresholds for these climate extremes were based on historical data from 1980 to 2019, allowing to identify critical environmental limits for species survival. Historical thresholds are defined by the 2.5th percentile for minimum flow and minimum temperature, the 97.5th percentile for maximum water temperature and zero-flow weeks, and the maximum value across the range for the maximum flow. Using these thresholds, two biodiversity impact metrics were calculated: the Percentage of Geographic Range Threatened (RT) and the Potentially Affected Fraction (PAF). RT measures the proportion of a species' geographic range where future variables will exceed historical thresholds against the historical species' geographic range already exceeding these thresholds. On the other hand, PAF estimates the percentage increase of affected species in future scenarios and it is calculated as the difference between cells exceeding the threshold historically and those projected to do so in future scenarios. The results reveal that, under less sustainable scenarios, climate extremes will put an increasing proportion of species at risk. By the decade 2040-2049, the percentage of species with over half of their range threatened is projected at 40.4\% under SSP5-8.5, 38.3\% under SSP3 7.0, and 33.6\% under SSP1-2.6, indicating heightened biodiversity risks associated with less sustainable scenarios. Findings also suggest that, over the analyzed decades, dams may have limited effects on biodiversity compared to the impacts deriving solely from SSP-RCP assumptions. However, an analysis of dam impacts for the individual year 2050 reveals that localized effects start to appear in regions like West Africa, particularly under the SSP3-7.0 scenario, which envisions a fragmented world with regionalized development and limited global cooperation on environmental issues. The analysis also indicates that maximum water temperature is a dominant driver of biodiversity threats, impacting broad regions, especially in Central Africa, the African Sahel, the Mediterranean Basins, and Zambezi Basins. Central Africa is projected to experience the steepest PAF increases under less sustainable scenarios due to compounded climate and socio economic pressures. In contrast, flow-related threats remain localized, primarily affecting major rivers and lake systems such as the Nile, Niger, Congo, and Lake Victoria. Limitations in model resolution may under-represent some habitat impacts, particularly in upstream areas; nonetheless, the findings underscore the critical need for enhanced mitigation strategies to protect African freshwater biodiversity. Pursuing a more sustainable pathway is essential to curb biodiversity loss. This research paves the way for further analyses on the impacts on fish biodiversity, particularly in countries where fish resources play a vital role due to their significant contributions to food security, livelihoods, and economic development. Future studies could refine the analysis by integrating seasonal variations in flow and temperature, offering a more detailed understanding of the challenges faced by species adapted to specific seasonal patterns. Furthermore, disentangling the effects of dams from those of climate change would allow for a more accurate assessment of their individual contributions. Finally, extending analyses beyond 2050 would also capture more significant scenario divergence.
Le nazioni africane si stanno sempre più avvicinando all'energia idroelettrica come soluzione energetica rinnovabile per soddisfare la crescente domanda di energia. È essenziale valutare le implicazioni ambientali di questa espansione, che prevede l’aggiunta di circa 300 nuovi progetti idroelettrici e punta a triplicare l'attuale capacità, portandola da 40 GW a 140 GW entro il 2050. Le ricerche esistenti in letteratura offrono spesso valutazioni incomplete dell’interazione tra sviluppo idroelettrico ed ecosistemi africani, specialmente per quanto riguarda la biodiversità. Per colmare questa lacuna, questa tesi utilizza l'African Hydropower Atlas, un database che contiene dati relativi agli impianti idroelettrici esistenti e futuri, integrandolo con il modello globale di qualità dell'acqua DYNQUAL. Questo modello simula portata e temperatura dell’acqua in tre scenari di dighe (condizione naturale, dighe esistenti, e dighe esistenti più quelle future), considerando gli scenari socio-climatici SSP-RCP 2-6.0, 3-7.0 e 5-8.5, forzati da cinque modelli climatici globali (GCM). Per valutare il rischio sulla biodiversità ittica, la temperatura e la portata dell'acqua sono state utilizzate come variabili chiave per definire le soglie climatiche estreme entro le quali le specie possono sopravvivere, stabilite sulla base di dati storici tra il 1980 e il 2019. Lo studio calcola le medie sul lungo termine di queste variabili, considerando le temperature d'acqua massime e minime, le portate massime e minime e le settimane a flusso zero. Le soglie storiche sono definite dal 2,5° percentile per il flusso minimo e la temperatura minima, dal 97,5° percentile per la temperatura massima dell'acqua e le settimane di assenza di flusso, e dal valore massimo dell'intervallo per il flusso massimo. Utilizzando queste soglie, sono state sviluppate due metriche di impatto sulla biodiversità: la percentuale dell'areale geografico minacciato (RT) e la frazione potenzialmente colpita (PAF). RT misura la proporzione dell'area geografica di una specie in cui le variabili future superano le soglie rispetto all'area geografica storica della specie che già superava queste soglie. PAF stima l'aumento percentuale delle specie colpite negli scenari futuri ed è calcolato come la differenza tra le celle che superano la soglia storicamente e quelle che si prevede lo faranno negli scenari futuri. I risultati rivelano che gli estremi climatici in scenari meno sostenibili aumentano la percentuale di specie a rischio. Entro il decennio 2040-2049, la percentuale di specie minacciate per oltre la metà del loro areale è stimata al 40,4\% con SSP5-8.5, al 38,3\% con SSP3-7.0 e al 33,6\% con SSP1 2.6, indicando maggiori rischi per la biodiversità associati agli scenari meno sostenibili. I risultati indicano che, rispetto agli scenari SSP-RCP, l'impatto delle dighe sulla biodiversità è trascurabile su tutte le decadi considerate. Tuttavia, un'analisi degli impatti delle dighe per il singolo anno 2050 rivela che iniziano a manifestarsi effetti localizzati in regioni come l'Africa occidentale, in particolare nello scenario SSP3-7.0, che prefigura un mondo frammentato, con sviluppo disomogeneo e regionalizzato e una cooperazione globale limitata sulle questioni ambientali. L'analisi indica inoltre che la temperatura massima dell'acqua rappresenta il principale fattore di minaccia alla biodiversità, che si concentra in particolare in Africa centrale, nel Sahel africano, nei bacini del Mediterraneo e nei bacini dello Zambesi. L'Africa centrale subisce gli aumenti più consistenti di PAF in scenari meno sostenibili, a causa delle pressioni climatiche e socio-economiche. Al contrario, le minacce legate al flusso rimangono localizzate e riguardano i principali fiumi e sistemi lacustri come il Nilo, il Niger, il Congo e il Lago Vittoria. E' importante sottolineare che limitazioni nella risoluzione del modello usato possono sotto-rappresentare alcuni impatti sugli habitat, in particolare nelle aree a monte; tuttavia, i risultati sottolineano la necessità di migliorare le strategie di mitigazione per proteggere la biodiversità africana. Perseguire un percorso più sostenibile è essenziale per frenare la perdita di biodiversità di specie ittiche. Questa ricerca evidenzia l'urgente necessità di una comprensione più approfondita degli impatti sulla biodiversità ittica, in particolare nei Paesi in cui le risorse ittiche svolgono un ruolo fondamentale, contribuendo in modo significativo alla sicurezza alimentare, ai mezzi di sussistenza e allo sviluppo economico. Studi futuri potrebbero includere nell'analisi le variazioni stagionali di portata e temperatura, fornendo una comprensione più approfondita delle dinamiche che influenzano le specie adattate a specifici cicli stagionali. Inoltre, disgiungere gli effetti delle dighe da quelli dei cambiamenti climatici consentirebbe una valutazione più accurata dei loro singoli contributi. Infine, estendere le analisi oltre il 2050 permetterebbe di cogliere divergenze più significative tra gli scenari.
Evaluating the impacts of hydropower projects on ecosystem services in Africa
Bonato, Valentina
2023/2024
Abstract
African countries are increasingly embracing hydropower as a renewable energy solution to meet rising energy demands sustainably. With plans to triple hydropower’s current capacity of 40 GW to 140 GW by 2050 through the addition of approximately 300 new hydropower projects, there is a pressing need to understand the environmental implications of this expansion. However, comprehensive assessments of hydropower’s interaction with African ecosystems, particularly regarding biodiversity, remain scarce in the literature. To address this gap, this thesis employs the African Hydropower Atlas, a database that merges both existing and proposed hydropower plants, within the global water-quality model DYNQUAL. This model simulates water discharge and temperature under three dam scenarios, namely natural condition, existing dams, and existing plus future dams, and across three future scenarios, SSP-RCP 2-6.0, 3-7.0, and 5-8.5, driven by five Global Climate Models (GCMs). To assess biodiversity risk, water temperature and discharge are used as key indicators for defining climate extreme thresholds within which African freshwater fish species can survive. The study calculates long-term averages of these variables, including maximum and minimum water temperatures and flow, and zero-flow weeks. Thresholds for these climate extremes were based on historical data from 1980 to 2019, allowing to identify critical environmental limits for species survival. Historical thresholds are defined by the 2.5th percentile for minimum flow and minimum temperature, the 97.5th percentile for maximum water temperature and zero-flow weeks, and the maximum value across the range for the maximum flow. Using these thresholds, two biodiversity impact metrics were calculated: the Percentage of Geographic Range Threatened (RT) and the Potentially Affected Fraction (PAF). RT measures the proportion of a species' geographic range where future variables will exceed historical thresholds against the historical species' geographic range already exceeding these thresholds. On the other hand, PAF estimates the percentage increase of affected species in future scenarios and it is calculated as the difference between cells exceeding the threshold historically and those projected to do so in future scenarios. The results reveal that, under less sustainable scenarios, climate extremes will put an increasing proportion of species at risk. By the decade 2040-2049, the percentage of species with over half of their range threatened is projected at 40.4\% under SSP5-8.5, 38.3\% under SSP3 7.0, and 33.6\% under SSP1-2.6, indicating heightened biodiversity risks associated with less sustainable scenarios. Findings also suggest that, over the analyzed decades, dams may have limited effects on biodiversity compared to the impacts deriving solely from SSP-RCP assumptions. However, an analysis of dam impacts for the individual year 2050 reveals that localized effects start to appear in regions like West Africa, particularly under the SSP3-7.0 scenario, which envisions a fragmented world with regionalized development and limited global cooperation on environmental issues. The analysis also indicates that maximum water temperature is a dominant driver of biodiversity threats, impacting broad regions, especially in Central Africa, the African Sahel, the Mediterranean Basins, and Zambezi Basins. Central Africa is projected to experience the steepest PAF increases under less sustainable scenarios due to compounded climate and socio economic pressures. In contrast, flow-related threats remain localized, primarily affecting major rivers and lake systems such as the Nile, Niger, Congo, and Lake Victoria. Limitations in model resolution may under-represent some habitat impacts, particularly in upstream areas; nonetheless, the findings underscore the critical need for enhanced mitigation strategies to protect African freshwater biodiversity. Pursuing a more sustainable pathway is essential to curb biodiversity loss. This research paves the way for further analyses on the impacts on fish biodiversity, particularly in countries where fish resources play a vital role due to their significant contributions to food security, livelihoods, and economic development. Future studies could refine the analysis by integrating seasonal variations in flow and temperature, offering a more detailed understanding of the challenges faced by species adapted to specific seasonal patterns. Furthermore, disentangling the effects of dams from those of climate change would allow for a more accurate assessment of their individual contributions. Finally, extending analyses beyond 2050 would also capture more significant scenario divergence.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Bonato.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: deposito tesi
Dimensione
37.59 MB
Formato
Adobe PDF
|
37.59 MB | Adobe PDF | Visualizza/Apri |
2024_12_Bonato_executive_summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: deposito executive summary
Dimensione
9.9 MB
Formato
Adobe PDF
|
9.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230910