Aortic annuloplasty is a surgical technique used to repair a regurgitant aortic root by reducing the circumference of its annulus, thereby limiting its expansion. This can be achieved by implanting sutures, bands, or rings, either externally or internally of the aortic root. While promising outcomes have been reported, the optimal shape, position and material remain unclear due to a lack of standardization. Further investigation is necessary to determine the most effective approach. This Master’s Thesis aims to assess the impact of aortic annuloplasty approaches on aortic root hemodynamics. A porcine-specific integrated approach, combining in vivo clinical imaging, in vitro experiments and in silico fluid-structure interaction simulations, was developed and preliminary validated. Magnetic-resonance imaging data of two control and two post-aortic annuloplasty animals were used to create porcine-specific models of the aortic root. These models served as the basis for fabricating experimental resin phantoms and computational digital twins. On one hand, the phantoms were tested on a pulsatile left heart flow-loop where pressure and flow curves were recorded. On the other hand, the digital twins were used to construct fluid-structure interaction simulations, with time-dependent pressure boundary conditions defined based on the resultant experimental pressure waveforms. Simulations results were then compared against in vivo data to assess the reliability of the methodology. Fluid-structure interaction simulations demonstrated hemodynamic results consistent with literature findings, confirming the porcine-specific models’ ability to replicate aortic root function. Comparison between the control and post-annuloplasty simulations suggested that aortic root physiological hemodynamics after the treatment is correctly restored, although further research is needed to confirm this conclusion. Good agreement with in vivo data was also observed. Overall, this work successfully proposed a comprehensive research framework. Furthermore, the development and proof-of-concept validation of a non-idealized digital twin of a post-annuloplasty aortic root represent a significant advancement in the field, providing a valuable tool for future research and potentially for clinical applications to aid aortic annuloplasty decision-making process.
L'annuloplastica aortica è un intervento chirurgico finalizzato a riparare l'insufficienza della radice aortica riducendo la circonferenza del suo annulus. Questa procedura prevede l'impianto di suture, bande o anelli, esternamente oppure internamente alla radice, con l'obiettivo di migliorarne la funzione. Sebbene i risultati clinici siano promettenti, non esiste ancora un consenso unanime sulla forma, la posizione e il materiale ottimali da utilizzare nella realizzazione di questa chirurgia. Si rivela quindi necessario approfondire ulteriormente per individuare l'approccio più efficace. Questa tesi di laurea si propone di valutare l'impatto dell’annuloplastica sull’emodinamica della valvola aortica. A tal fine, è stato sviluppato e preliminarmente validato un approccio integrato che combina immagini cliniche in vivo, esperimenti in vitro e simulazioni computazionali di interazione fluido-struttura in silico. Sono stati utilizzati dati di risonanza magnetica di quattro modelli animali porcini, due sottoposti ad annuloplastica aortica e due non trattati, per creare modelli virtuali tridimensionali della radice aortica. Questi modelli sono stati prima utilizzati per realizzare modelli fisici stampati in 3D in resina, che sono stati testati su un simulatore di cuore sinistro sul quale sono state registrate le curve di pressione e di flusso. In secondo luogo, sono stati adottati per eseguire simulazioni di interazione fluido-struttura, le cui condizioni al contorno di pressione sono state definite sulla base delle curve sperimentali raccolte. Infine, i risultati delle simulazioni sono stati confrontati con dati in vivo per valutare l’affidabilità della metodologia. I risultati computazionali si sono mostrati coerenti con la letteratura scientifica esistente, confermando le potenzialità dei modelli porcini di replicare l’emodinamica di una radice aortica. Inoltre, il confronto tra i modelli del gruppo di controllo e quelli trattati con annuloplastica ha suggerito che l'intervento chirurgico ripristina una fisiologica emodinamica nella radice aortica. Tuttavia, maggiori studi sono necessari per confermare questa conclusione. Infine, è stata osservata una buona corrispondenza con i dati in vivo. In conclusione, questo studio ha proposto un approccio innovativo e completo per valutare l'impatto dell’annuloplastica sull’emodinamica della radice. Inoltre, lo sviluppo di un modello virtuale di una radice aortica trattata con annuloplastica rappresenta un importante passo avanti nella ricerca in questo campo e apre nuove prospettive per lo sviluppo di strumenti di supporto alla decisione clinica.
Investigating aortic root hemodynamics with an in vivo, in vitro and in silico comprehensive approach: a porcine-specific study on aortic annuloplasty
Zattoni, Marta
2023/2024
Abstract
Aortic annuloplasty is a surgical technique used to repair a regurgitant aortic root by reducing the circumference of its annulus, thereby limiting its expansion. This can be achieved by implanting sutures, bands, or rings, either externally or internally of the aortic root. While promising outcomes have been reported, the optimal shape, position and material remain unclear due to a lack of standardization. Further investigation is necessary to determine the most effective approach. This Master’s Thesis aims to assess the impact of aortic annuloplasty approaches on aortic root hemodynamics. A porcine-specific integrated approach, combining in vivo clinical imaging, in vitro experiments and in silico fluid-structure interaction simulations, was developed and preliminary validated. Magnetic-resonance imaging data of two control and two post-aortic annuloplasty animals were used to create porcine-specific models of the aortic root. These models served as the basis for fabricating experimental resin phantoms and computational digital twins. On one hand, the phantoms were tested on a pulsatile left heart flow-loop where pressure and flow curves were recorded. On the other hand, the digital twins were used to construct fluid-structure interaction simulations, with time-dependent pressure boundary conditions defined based on the resultant experimental pressure waveforms. Simulations results were then compared against in vivo data to assess the reliability of the methodology. Fluid-structure interaction simulations demonstrated hemodynamic results consistent with literature findings, confirming the porcine-specific models’ ability to replicate aortic root function. Comparison between the control and post-annuloplasty simulations suggested that aortic root physiological hemodynamics after the treatment is correctly restored, although further research is needed to confirm this conclusion. Good agreement with in vivo data was also observed. Overall, this work successfully proposed a comprehensive research framework. Furthermore, the development and proof-of-concept validation of a non-idealized digital twin of a post-annuloplasty aortic root represent a significant advancement in the field, providing a valuable tool for future research and potentially for clinical applications to aid aortic annuloplasty decision-making process.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Zattoni_Executive_summary.pdf
non accessibile
Descrizione: Executive summary
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri |
2024_12_Zattoni_Thesis.pdf
non accessibile
Descrizione: Thesis
Dimensione
12.34 MB
Formato
Adobe PDF
|
12.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230965