This thesis addresses the challenge of enabling line-follower robots to adapt to chang ing environmental conditions by using Streaming Machine Learning (SML). Traditional control methods, such as PID controllers, perform well in stable settings but struggle with concept drift, where the input data distribution changes over time. This limitation makes these controllers unsuitable for dynamic, real-world applications. In response, we developed a continuous learning system capable of real-time adaptation to concept drift. Our solution integrates a custom-built simulation environment in Webots, where an e-puck robot navigates a track under variable conditions, simulating scenarios such as shifts in lighting. Using an Adaptive Random Forest (ARF) model pre-trained on histor ical data, we provide the robot with a reliable initial model, which then adapts as new data is encountered. A drift detection mechanism identifies changes in the environment, activating the continuous learning component that updates the model to retain accuracy without catastrophic forgetting. Experimental results demonstrate the system’s effectiveness across various drift types, both abrupt and gradual, confirming that the adaptive learning framework allows the robot to maintain its trajectory in complex, shifting conditions. This work contributes to the development of resilient robotic systems for applications in dynamic environments, where autonomous adaptability is critical for reliable performance.
Questa tesi affronta la sfida di permettere ai robot line-follower di adattarsi a condizioni ambientali mutevoli attraverso l’uso dello Streaming Machine Learning (SML). I metodi di controllo tradizionali, come i controller PID, funzionano bene in contesti stabili ma fat icano a gestire il concept drift, ossia quando la distribuzione dei dati in ingresso cambia nel tempo. Questa limitazione rende tali controller inadatti per applicazioni dinamiche nel mondo reale. Per risolvere questo problema, abbiamo sviluppato un sistema di ap prendimento continuo capace di adattarsi in tempo reale ai cambiamenti di distribuzione dei dati. La nostra soluzione integra un ambiente di simulazione personalizzato in Webots, in cui un robot e-puck naviga lungo un percorso sotto condizioni variabili, simulando scenari come variazioni di illuminazione. Utilizzando un modello di Adaptive Random Forest (ARF) pre-addestrato su dati storici, forniamo al robot un modello iniziale affidabile, che si adatta progressivamente man mano che incontra nuovi dati. Un meccanismo di rilevamento del drift identifica i cambiamenti nell’ambiente, attivando la componente di apprendimento continuo che aggiorna il modello mantenendo l’accuratezza e prevenendo il catastrophic forgetting. I risultati sperimentali che abbiamo ottenuto dimostrano l’efficacia del sistema su vari tipi di drift, sia improvvisi che graduali, confermando che il framework di apprendimento adattivo consente al robot di mantenere la traiettoria in condizioni complesse e mutevoli. Questo lavoro contribuisce allo sviluppo di sistemi robotici resilienti, ideali per applicazioni in ambienti dinamici, dove l’adattabilità autonoma è fondamentale per prestazioni affid abili.
Streaming machine learning for real-time adaption in line following robots under concept drift
Zanella, Francesco
2023/2024
Abstract
This thesis addresses the challenge of enabling line-follower robots to adapt to chang ing environmental conditions by using Streaming Machine Learning (SML). Traditional control methods, such as PID controllers, perform well in stable settings but struggle with concept drift, where the input data distribution changes over time. This limitation makes these controllers unsuitable for dynamic, real-world applications. In response, we developed a continuous learning system capable of real-time adaptation to concept drift. Our solution integrates a custom-built simulation environment in Webots, where an e-puck robot navigates a track under variable conditions, simulating scenarios such as shifts in lighting. Using an Adaptive Random Forest (ARF) model pre-trained on histor ical data, we provide the robot with a reliable initial model, which then adapts as new data is encountered. A drift detection mechanism identifies changes in the environment, activating the continuous learning component that updates the model to retain accuracy without catastrophic forgetting. Experimental results demonstrate the system’s effectiveness across various drift types, both abrupt and gradual, confirming that the adaptive learning framework allows the robot to maintain its trajectory in complex, shifting conditions. This work contributes to the development of resilient robotic systems for applications in dynamic environments, where autonomous adaptability is critical for reliable performance.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Zanella_Tesi.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
3.14 MB
Formato
Adobe PDF
|
3.14 MB | Adobe PDF | Visualizza/Apri |
2024_12_Zanella_Executive_Summary.pdf
accessibile in internet per tutti
Descrizione: exxecutive summary
Dimensione
491.36 kB
Formato
Adobe PDF
|
491.36 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/230971