In recent years, growing concerns about the use of Rare Earth Elements (REE) in high-temperature alloys have driven the development of alternative compositions with reduced rare earth content. However, these new alloys often exhibit insufficient mechanical properties, prompting renewed interest in promising alternatives such as Ni-Si-based alloys. Research into the properties of Ni3Si gained significant attention until the early 2000s but declined due to manufacturing challenges. The introduction of Additive Manufacturing (AM) has revitalized interest in Ni-Si alloys, offering new possibilities for their production. The present study evaluates previous research on optimizing alloy compositions, gas atomization, and the Laser Metal Deposition (LMD) process. The suitability of gas-atomized NiSi12-wt% powder for AM is assessed by analyzing powder morphology and size distribution using Scanning Electron Microscopy (SEM) and wet laser diffraction. Additional characterization, including Light Optical Microscopy (LOM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), and Differential Scanning Calorimetry (DSC), confirms the microstructural consistency, phase stability, and thermal behavior of the spherical particles, demonstrating their suitability for AM applications. Samples were produced using the optimized LMD process with powders of NiSi10.15V4.85 wt%, NiSi11.9Co3.4 wt%, NiSi11.2Mo1.8 wt%, NiSi10.78Ti1.84B0.1 wt%, and NiSi12 wt%. Most prints exhibited satisfactory cylindrical geometries with minimal variability, except for NiSiTiB, which displayed an irregular surface and an asymmetrical section. Detailed microstructural studies and phase analysis reveal variations along and across the prints, with distinct distributions of ternary alloying elements. Shared phenomena were observed across multiple samples, such as stabilizing the γ(Ni31Si12) phase through in-situ heat treatment. The absence of extensive cracking and the dense samples observed in X-ray Computed Tomography (CT) further validate the potential of Ni-Si alloys for AM applications.
Negli ultimi anni, il contenuto di terre rare nelle leghe resistenti alle alte temperature ha destato particolari preoccupazioni, portando allo sviluppo di leghe alternative con ridotte concentrazioni di questi elementi. Tuttavia, le proprietà meccaniche insufficienti di questi nuovi materiali hanno rinnovato l’interesse verso alternative come le lege a base Ni-Si. La ricerca sulle proprietà della fase Ni3Si ha suscitato interesse fino ai primi anni 2000, quando si è interrotta a causa delle difficoltà nella lavorazione della lega. L’emergere delle tecnologie di manifattura additiva ha aperto nuove opportunità per le leghe Ni-Si. Questo studio intende valutare la bontà delle ricerche precedenti in merito all’ottimizzare della composizione chimica delle leghe, sul processo di atomizzazione a gas e sulla la lavorazione attraverso “Laser Metal Deposition” (LMD). L’idoneità della polvere di NiSi12-wt% atomizzata a gas per le tecnologie AM è stata analizzata attraverso la morfologia delle particelle e la distribuzione granulometrica (PSD), utilizzando la microscopia elettronica a scansione (SEM) e la diffrazione laser. Ulteriori analisi tra cui microscopia ottica (OM), spettroscopia EDS, diffrazione a raggi X (XRD) e calorimetria a scansione differenziale (DSC), hanno confermato microstrutture e fasi consistenti nelle particelle di varie dimensioni, evidenziando un comportamento termico analogo, confermando quindi l’idoneità l’impiego AM. I campioni sono stati prodotti utilizzando il processo LMD ottimizzato con polveri di NiSi10,15V4,85 wt%, NiSi11,9Co3,4 wt%, NiSi11,2Mo1,8 wt%, NiSi10,78Ti1,84B0,1 wt% e NiSi12 wt%. La maggior parte dei campioni ha dimostrato buone geometrie cilindriche con una variabilità contenuta, ad eccezione di NiSiTiB, che presenta una sezione asimmetrica e una superficie irregolare. L’analisi delle fasi e della microstruttura ha rivelato un’evoluzione lungo l’altezza dei campioni e una presenza selettiva degli elementi terziari di lega in certe fasi. Tuttavia, alcuni campioni mostrano fenomeni comuni, come la stabilizzazione della fase γ(Ni31Si12) generata dalle condizioni termiche locali. La qualità dell’ottimizzazione del processo è confermata dall’assenza di cricche estese e dai risultati della tomografia computerizzata a raggi X, che indicano campioni principalmente densi, confermando il potenziale delle leghe Ni-Si per applicazioni AM.
Additive manufacturing of nickel silicon alloys: from powders to print
Trapletti, Tiziano
2023/2024
Abstract
In recent years, growing concerns about the use of Rare Earth Elements (REE) in high-temperature alloys have driven the development of alternative compositions with reduced rare earth content. However, these new alloys often exhibit insufficient mechanical properties, prompting renewed interest in promising alternatives such as Ni-Si-based alloys. Research into the properties of Ni3Si gained significant attention until the early 2000s but declined due to manufacturing challenges. The introduction of Additive Manufacturing (AM) has revitalized interest in Ni-Si alloys, offering new possibilities for their production. The present study evaluates previous research on optimizing alloy compositions, gas atomization, and the Laser Metal Deposition (LMD) process. The suitability of gas-atomized NiSi12-wt% powder for AM is assessed by analyzing powder morphology and size distribution using Scanning Electron Microscopy (SEM) and wet laser diffraction. Additional characterization, including Light Optical Microscopy (LOM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), and Differential Scanning Calorimetry (DSC), confirms the microstructural consistency, phase stability, and thermal behavior of the spherical particles, demonstrating their suitability for AM applications. Samples were produced using the optimized LMD process with powders of NiSi10.15V4.85 wt%, NiSi11.9Co3.4 wt%, NiSi11.2Mo1.8 wt%, NiSi10.78Ti1.84B0.1 wt%, and NiSi12 wt%. Most prints exhibited satisfactory cylindrical geometries with minimal variability, except for NiSiTiB, which displayed an irregular surface and an asymmetrical section. Detailed microstructural studies and phase analysis reveal variations along and across the prints, with distinct distributions of ternary alloying elements. Shared phenomena were observed across multiple samples, such as stabilizing the γ(Ni31Si12) phase through in-situ heat treatment. The absence of extensive cracking and the dense samples observed in X-ray Computed Tomography (CT) further validate the potential of Ni-Si alloys for AM applications.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Trapletti .pdf
accessibile in internet per tutti
Descrizione: testo tesi
Dimensione
50.37 MB
Formato
Adobe PDF
|
50.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231035