The National Center for Oncological Hadrontherapy (CNAO) is equipped with a synchrotron capable of accelerating protons and carbon ions for hadrontherapy. Currently, CNAO is expanding to include a Boron Neutron Capture Therapy (BNCT) facility and a proton therapy unit with a rotating gantry. Additionally, the synchrotron will be upgraded to accelerate He, Li, O, and Fe ions for therapeutic and experimental purposes. Secondary neutrons, generated by the interactions between the primary beam and machine components, contribute to ambient radiation doses, with additional radiation losses possible during beam injection, extraction, or target interactions. To continuously monitor the neutron field, CNAO’s radiation protection team developed a cost-effective REM counter, utilizing a Microstructured Semiconductor Neutron Detector (MSND) within a plastic moderator with cadmium and lead inserts. The radiation protection team requested the development of a system capable of managing multiple detectors and providing a thorough characterization of the detector’s performance. This thesis focuses on the development of a network of REM counters, managed through centralized software, aimed at controlling and managing ambient dose equivalent measurements throughout the facility. A network was established, connecting multiple detectors to a single computer, enabling real-time data visualization, network checks, measurement control, data retrieval from Raspberry Pi devices, and database creation for storing and displaying dose information. Additionally, data from the Czech Metrology Institute (CMI) were analyzed for calibration coefficient calculations and assess linearity, and data from the CERN-EU High-Energy Reference Field (CERF) were examined to verify the dose response in mixed fields. Additional tests were conducted at CNAO, where the detectors were validated in fields generated by irradiating phantoms in the treatment room, with comparisons to the WENDI detector. The network and software were initially validated using an Am-Be neutron source, and comparisons, along with Monte Carlo simulations using FLUKA, confirmed the system's accuracy and reliability. Subsequent testing in the XPR research room further validated the system's robustness and long-term durability.
Il Centro Nazionale di Adroterapia Oncologica (CNAO) è dotato di un sincrotrone in grado di accelerare protoni e ioni di carbonio per applicazioni di adroterapia. Attualmente, il CNAO si sta espandendo per includere una struttura di Boron Neutron Capture Therapy (BNCT) e un’unità di protonterapia con gantry rotante. Inoltre, il sincrotrone sarà potenziato per accelerare ioni di He, Li, O e Fe, a scopi terapeutici e sperimentali. Neutroni secondari, generati dall’interazione tra il fascio primario e i componenti della macchina, contribuiscono ai livelli di dose ambientale di radiazione, con ulteriori perdite radiative che possono verificarsi durante i processi di iniezione, estrazione o interazione con i bersagli. Per monitorare continuamente il campo di neutroni, il team di radioprotezione del CNAO ha sviluppato un contatore REM economico, che utilizza un Microstructured Semiconductor Neutron Detector (MSND) all'interno di un moderatore di plastica con inserti di cadmio e piombo. Il team di radioprotezione ha richiesto lo sviluppo di un sistema in grado di gestire più rivelatori e di fornire una caratterizzazione completa delle prestazioni del rivelatore. Questa tesi si concentra sullo sviluppo di una rete di contatori REM, gestiti tramite un software centralizzato, per il controllo e la gestione delle misure di Equivalente di Dose Ambientale in tutta la struttura. È stata creata una rete, collegando più rivelatori a un unico computer, consentendo la visualizzazione in tempo reale dei dati, la verifica della rete, il controllo delle misurazioni, il recupero dei dati dai dispositivi Raspberry Pi e la creazione di un database per l’archiviazione e la visualizzazione delle informazioni sulla dose. Inoltre, i dati del Czech Metrology Institute (CMI) sono stati analizzati per calcolare il coefficiente di calibrazione e verificare la linearità, mentre i dati del CERN-EU High-Energy Reference Field (CERF) sono stati esaminati per verificare la risposta in dose in campi misti. Ulteriori test sono stati condotti al CNAO, dove i rivelatori sono stati validati in campi generati irradiando fantocci nella sala di trattamento, confrontando i risultati con il rivelatore WENDI. La rete e il software sono stati inizialmente validati utilizzando una sorgente di neutroni Am-Be, e i confronti con le simulazioni Monte Carlo tramite FLUKA hanno confermato l'accuratezza e l’affidabilità del sistema. Ulteriori test nella sala di ricerca XPR hanno poi validato la robustezza e la durabilità a lungo termine del sistema.
Validation and characterization of an extanded range neutron detector: design of a control network and software for multi-device management
Morriello, Margherita
2023/2024
Abstract
The National Center for Oncological Hadrontherapy (CNAO) is equipped with a synchrotron capable of accelerating protons and carbon ions for hadrontherapy. Currently, CNAO is expanding to include a Boron Neutron Capture Therapy (BNCT) facility and a proton therapy unit with a rotating gantry. Additionally, the synchrotron will be upgraded to accelerate He, Li, O, and Fe ions for therapeutic and experimental purposes. Secondary neutrons, generated by the interactions between the primary beam and machine components, contribute to ambient radiation doses, with additional radiation losses possible during beam injection, extraction, or target interactions. To continuously monitor the neutron field, CNAO’s radiation protection team developed a cost-effective REM counter, utilizing a Microstructured Semiconductor Neutron Detector (MSND) within a plastic moderator with cadmium and lead inserts. The radiation protection team requested the development of a system capable of managing multiple detectors and providing a thorough characterization of the detector’s performance. This thesis focuses on the development of a network of REM counters, managed through centralized software, aimed at controlling and managing ambient dose equivalent measurements throughout the facility. A network was established, connecting multiple detectors to a single computer, enabling real-time data visualization, network checks, measurement control, data retrieval from Raspberry Pi devices, and database creation for storing and displaying dose information. Additionally, data from the Czech Metrology Institute (CMI) were analyzed for calibration coefficient calculations and assess linearity, and data from the CERN-EU High-Energy Reference Field (CERF) were examined to verify the dose response in mixed fields. Additional tests were conducted at CNAO, where the detectors were validated in fields generated by irradiating phantoms in the treatment room, with comparisons to the WENDI detector. The network and software were initially validated using an Am-Be neutron source, and comparisons, along with Monte Carlo simulations using FLUKA, confirmed the system's accuracy and reliability. Subsequent testing in the XPR research room further validated the system's robustness and long-term durability.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Morriello_Tesi_01.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
14.96 MB
Formato
Adobe PDF
|
14.96 MB | Adobe PDF | Visualizza/Apri |
2024_12_Morriello_Executive Summary_02.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.77 MB
Formato
Adobe PDF
|
1.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231055