This work develops a comprehensive framework to evaluate the impact of Earth Ob- servation (EO) missions on Sustainable Development Goals (SDGs), integrating both model-based and data-driven methodologies. Initially, model-based approaches have been applied to compute indices assessing the contributions of existing EO missions across vari- ous SDG-related services. These indices serve as a foundation for estimating the missions’ contributions to specific SDG activities, based on well-defined service requirements. Expanding upon this, a novel data-driven approach has been developed, utilizing indices derived from the model-based calculations to predict the performance of conceptual or future EO missions. For each index, a single input parameter has been selected to build predictive models through curve fitting, allowing the estimation of indices even for missions with limited data. By aligning the data-driven indices with model-based scores, the framework enables a more flexible assessment, providing a way to predict contributions from missions in the planning stage. Additionally, the indices have then been mapped to a final SDG impact score, maintaining consistency across both methodologies. This method highlights the difficulties in measuring social benefits, with particular drawbacks in figuring out service needs, managing adaptable sensor operations, and depending on expert-driven assignments for SDG contributions. Nevertheless, the combined methodology presented here offers a versatile tool for assessing EO mission impacts, supporting informed decision-making for future mission planning and policy alignment with global sustainability goals.
Questa tesi sviluppa un approccio integrato per valutare l’impatto delle missioni di osservazione della Terra (EO) sugli Obiettivi di Sviluppo Sostenibile (SDG), utilizzando metodi basati su modelli e analisi data-driven. Inizialmente, gli indici sono stati calcolati per le missioni EO esistenti attraverso un metodo modellistico che considera i requisiti di servizio per varie applicazioni. Questi dati sono stati quindi impiegati come base per sviluppare indici data-driven predittivi, consentendo di stimare l’impatto di missioni EO future e concettuali con input limitati. Ogni indice è stato stimato tramite un parametro d’ingresso chiave, ottimizzato mediante fitting dei dati esistenti, e successivamente aggregato per determinare il punteggio complessivo di contributo agli SDG. Le sfide principali includono la difficoltà intrinseca nel quantificare benefici sociali non direttamente misurabili e nella definizione di requisiti di servizio che presentano confini incerti. Il processo di assegnazione dei contributi agli SDG è stato determinato da un piccolo gruppo di esperti, evidenziando l’importanza di ulteriori studi e coinvolgimento di stakeholder per migliorare la robustezza del metodo. Questo lavoro fornisce un approccio strutturato per valutare e prevedere il potenziale impatto delle missioni EO, supportando la pianificazione futura di missioni satellitari mirate agli SDG.
Assessing the impact of Earth observation missions on sustainable development goals through a model-based and a data-driven approach
Carlà, Giulio
2023/2024
Abstract
This work develops a comprehensive framework to evaluate the impact of Earth Ob- servation (EO) missions on Sustainable Development Goals (SDGs), integrating both model-based and data-driven methodologies. Initially, model-based approaches have been applied to compute indices assessing the contributions of existing EO missions across vari- ous SDG-related services. These indices serve as a foundation for estimating the missions’ contributions to specific SDG activities, based on well-defined service requirements. Expanding upon this, a novel data-driven approach has been developed, utilizing indices derived from the model-based calculations to predict the performance of conceptual or future EO missions. For each index, a single input parameter has been selected to build predictive models through curve fitting, allowing the estimation of indices even for missions with limited data. By aligning the data-driven indices with model-based scores, the framework enables a more flexible assessment, providing a way to predict contributions from missions in the planning stage. Additionally, the indices have then been mapped to a final SDG impact score, maintaining consistency across both methodologies. This method highlights the difficulties in measuring social benefits, with particular drawbacks in figuring out service needs, managing adaptable sensor operations, and depending on expert-driven assignments for SDG contributions. Nevertheless, the combined methodology presented here offers a versatile tool for assessing EO mission impacts, supporting informed decision-making for future mission planning and policy alignment with global sustainability goals.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Carlà_Executive summary_02.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.67 MB
Formato
Adobe PDF
|
1.67 MB | Adobe PDF | Visualizza/Apri |
2024_12_Carlà_Thesis_01.pdf
accessibile in internet per tutti
Descrizione: Thesis main body
Dimensione
11.67 MB
Formato
Adobe PDF
|
11.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231075