In recent years, science has made significant progress in disease treatment and extending human life. Nanomedicine, driven by innovations in nanotechnology, has played a key role, especially through the use of nanomaterials. Drug delivery systems, regenerative medicine, and cancer diagnosis and treatment are just a few areas where solutions are being sought to improve human health and longevity. This study explores a potential drug delivery system based on a halogenated pentapeptide, capable of self-assembling into nanovesicles through non-covalent interactions between amino acids. The KLVFF(I) peptide has a strong tendency to form hollow nanostructures about 100 nm in size, which can effectively encapsulate hydrophobic drugs. To evaluate the encapsulation capacity and release dynamics, the hydrophobic fluorescent dye 5(6)-carboxyfluorescein was used as a model drug. The results showed promising encapsulation efficiency and sustained release, highlighting the potential of KLVFF(I) nanovesicles as drug carriers. The study also examined the peptide’s proteolytic resistance, using chymotrypsin, a protease commonly found in biological media. High-Performance Liquid Chromatography (HPLC) and Mass Spectrometry (MS) analyses indicated that the impact of chymotrypsin on the peptide was negligible, with minimal differences in release profiles. The stability of the peptide nanovesicles was then assessed in various media simulating biological conditions. Despite efforts to optimize factors like concentration, temperature, and pH, initial trials revealed challenges in the nanostructures’ stability in buffers and protein-containing media. To address this, a pre-induced corona of bovine serum albumin (BSA) was used, significantly improving the colloidal stability of the nanovesicles, even in the presence of FBS proteins. Additionally, other methods to enhance peptide stability, such as chemical crosslinking with glutaraldehyde, were explored. Preliminary experiments optimized reaction parameters, preventing aggregation while maintaining the system's integrity. Overall, this study confirms KLVFF(I) peptide nanovesicles as a promising platform for drug delivery, offering new insights into the design and stability of peptide-based nanocarriers in complex biological environments.
Negli ultimi anni, la scienza ha compiuto importanti progressi nel trattamento delle malattie e nell'estensione della vita umana. La nanomedicina, grazie all'innovazione portata dalla nanotecnologia, ha giocato un ruolo fondamentale, specialmente nell'uso dei nanomateriali. Sistemi di somministrazione dei farmaci, medicina rigenerativa e diagnosi e trattamento del cancro sono solo alcune delle aree in cui si cercano soluzioni per migliorare la salute e la longevità umana. Questo studio esplora un potenziale sistema di somministrazione dei farmaci basato su un pentapeptide alogenato, capace di auto-assemblarsi in nanovescicole grazie alle interazioni non covalenti tra gli amminoacidi. Il peptide KLVFF(I) ha una forte tendenza a formare nanostrutture cave di circa 100 nm, in grado di incapsulare efficacemente farmaci idrofobici. Per valutare la capacità di incapsulamento e le dinamiche di rilascio, è stato utilizzato il colorante fluorescente idrofobico 5(6)-carbossifluoresceina. I risultati hanno mostrato un'efficienza di incapsulamento promettente e un rilascio sostenuto, evidenziando il potenziale delle nanovescicole di KLVFF(I) come vettori per farmaci. Lo studio ha inoltre esaminato la resistenza proteolitica del peptide, utilizzando la chimotripsina, una proteasi comune nei media biologici. Le analisi tramite Cromatografia Liquida ad Alte Prestazioni (HPLC) e Spettrometria di Massa (MS) hanno mostrato che l'effetto della chimotripsina sul peptide è stato trascurabile, con differenze minime nei profili di rilascio. La stabilità delle nanovescicole di peptide è stata successivamente valutata in diversi mezzi che simulano condizioni biologiche. Nonostante gli sforzi per ottimizzare fattori come concentrazione, temperatura e pH, le prime prove hanno evidenziato difficoltà nella stabilità delle nanostrutture in tamponi e fluidi contenenti proteine. Per migliorare la stabilità, è stato utilizzato una corona pre-indotta di albumina sierica bovina (BSA), che ha aumentato significativamente la stabilità colloidale delle nanovescicole, anche in presenza di proteine FBS. Inoltre, sono stati esplorati metodi per potenziare la stabilità del peptide, tra cui il legame chimico con gluteraldeide. I primi esperimenti hanno ottimizzato i parametri di reazione, prevenendo l'aggregazione e mantenendo l'integrità del sistema. In sintesi, lo studio conferma le nanovescicole di KLVFF(I) come una promettente piattaforma per la somministrazione di farmaci, fornendo nuove prospettive per il design e la stabilità dei nanocarrier a base di peptidi in ambienti biologici complessi.
Peptide nanovesicles as drug carriers across biological fluids
FUMIENTO, FABIO
2023/2024
Abstract
In recent years, science has made significant progress in disease treatment and extending human life. Nanomedicine, driven by innovations in nanotechnology, has played a key role, especially through the use of nanomaterials. Drug delivery systems, regenerative medicine, and cancer diagnosis and treatment are just a few areas where solutions are being sought to improve human health and longevity. This study explores a potential drug delivery system based on a halogenated pentapeptide, capable of self-assembling into nanovesicles through non-covalent interactions between amino acids. The KLVFF(I) peptide has a strong tendency to form hollow nanostructures about 100 nm in size, which can effectively encapsulate hydrophobic drugs. To evaluate the encapsulation capacity and release dynamics, the hydrophobic fluorescent dye 5(6)-carboxyfluorescein was used as a model drug. The results showed promising encapsulation efficiency and sustained release, highlighting the potential of KLVFF(I) nanovesicles as drug carriers. The study also examined the peptide’s proteolytic resistance, using chymotrypsin, a protease commonly found in biological media. High-Performance Liquid Chromatography (HPLC) and Mass Spectrometry (MS) analyses indicated that the impact of chymotrypsin on the peptide was negligible, with minimal differences in release profiles. The stability of the peptide nanovesicles was then assessed in various media simulating biological conditions. Despite efforts to optimize factors like concentration, temperature, and pH, initial trials revealed challenges in the nanostructures’ stability in buffers and protein-containing media. To address this, a pre-induced corona of bovine serum albumin (BSA) was used, significantly improving the colloidal stability of the nanovesicles, even in the presence of FBS proteins. Additionally, other methods to enhance peptide stability, such as chemical crosslinking with glutaraldehyde, were explored. Preliminary experiments optimized reaction parameters, preventing aggregation while maintaining the system's integrity. Overall, this study confirms KLVFF(I) peptide nanovesicles as a promising platform for drug delivery, offering new insights into the design and stability of peptide-based nanocarriers in complex biological environments.File | Dimensione | Formato | |
---|---|---|---|
"2024_12_Fumiento_Tesi.pdf
non accessibile
Descrizione: testo tesi
Dimensione
3.23 MB
Formato
Adobe PDF
|
3.23 MB | Adobe PDF | Visualizza/Apri |
2024_12_Fumiento_Executive summary.pdf
non accessibile
Descrizione: testo executive summary
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231125