Tissue engineering is a rapidly growing field within the biomedical sciences, offering immense potential in regenerative medicine. It holds the promise of advancing diagnostic methods and enabling the regeneration of damaged or diseased tissues by creating structures that closely mimic the natural cellular environment. These environments facilitate the study of living cells and support the growth of new tissues. This thesis focuses on the design, synthesis, and characterization of photoresponsive molecules, particularly azobenzene derivatives. These molecules are intended for integration into structures designed for tissue engineering applications, with the specific goal on stimulating induced pluripotent stem cells (iPSCs). The newly synthesized "push-pull" azobenzenes demonstrated strong responsiveness to visible light, a highly desirable trait for biomedical applications, along with highly reversible behaviour. Experimental results also highlighted notable emission phenomena, particularly upon stimulation of the cis isomers, and a pronounced influence of solvent polarity on their photophysical properties. Furthermore, these molecules were successfully integrated into biocompatible scaffolds, including 2D PVA nanofiber mats and 1D heterofunctionalized PEG for capping of lithographed gold surfaces. This thesis provides valuable insights into the design of push-pull azobenzenes for photosensitive scaffolds in tissue engineering, contributing to further exploration of photochromic materials in biomedical applications.
L'ingegneria tissutale è un campo in rapida espansione all'interno delle scienze biomediche, con un enorme potenziale nella medicina rigenerativa. Promette di migliorare i metodi diagnostici e di rendere possibile la rigenerazione di tessuti danneggiati o malati attraverso la creazione di strutture che imitano fedelmente l'ambiente cellulare. Questi ambienti consentono lo studio delle cellule vive e supportano la crescita di nuovi tessuti. Questa tesi si concentra su progettazione, sintesi e caratterizzazione di molecole fotoresponsive, in particolare di derivati degli azobenzeni. Queste molecole sono poi state integrate in strutture per applicazioni di ingegneria tissutale, con l'obiettivo di stimolare cellule staminali pluripotenti indotte (iPSCs). I nuovi azobenzeni "push-pull" sintetizzati hanno dimostrato una elevata sensibilità alla luce visibile, una caratteristica altamente desiderabile per le applicazioni biomediche, insieme a un comportamento reversibile. I risultati sperimentali hanno inoltre evidenziato fenomeni di emissione significativi, in particolare in seguito alla stimolazione degli isomeri cis, e una marcata influenza della polarità del solvente sulle proprietà fotofisiche. Inoltre, queste molecole sono state integrate con successo in scaffold biocompatibili, in particolare in strutture 2D di nanofibre di PVA e in strutture 1D di PEG funzionalizzato per rivestire superfici in oro litografato. Questa tesi fornisce importanti spunti sulla progettazione di azobenzeni "push-pull" per scaffold fotosensibili nell'ingegneria tissutale, contribuendo all'ulteriore esplorazione dei materiali fotocromici nelle applicazioni biomediche.
1D- and 2D- nanostructures functionalization with push-pull azobenzenes for photostimulation of induced Pluripotent stem cells
De Santis, Raffaele
2023/2024
Abstract
Tissue engineering is a rapidly growing field within the biomedical sciences, offering immense potential in regenerative medicine. It holds the promise of advancing diagnostic methods and enabling the regeneration of damaged or diseased tissues by creating structures that closely mimic the natural cellular environment. These environments facilitate the study of living cells and support the growth of new tissues. This thesis focuses on the design, synthesis, and characterization of photoresponsive molecules, particularly azobenzene derivatives. These molecules are intended for integration into structures designed for tissue engineering applications, with the specific goal on stimulating induced pluripotent stem cells (iPSCs). The newly synthesized "push-pull" azobenzenes demonstrated strong responsiveness to visible light, a highly desirable trait for biomedical applications, along with highly reversible behaviour. Experimental results also highlighted notable emission phenomena, particularly upon stimulation of the cis isomers, and a pronounced influence of solvent polarity on their photophysical properties. Furthermore, these molecules were successfully integrated into biocompatible scaffolds, including 2D PVA nanofiber mats and 1D heterofunctionalized PEG for capping of lithographed gold surfaces. This thesis provides valuable insights into the design of push-pull azobenzenes for photosensitive scaffolds in tissue engineering, contributing to further exploration of photochromic materials in biomedical applications.File | Dimensione | Formato | |
---|---|---|---|
2024_12_de Santis_Tesi_01.pdf
non accessibile
Descrizione: Corpo della Tesi
Dimensione
13.29 MB
Formato
Adobe PDF
|
13.29 MB | Adobe PDF | Visualizza/Apri |
2024_12_de Santis_Executive Summary_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231165