Metal artifacts in cardiac computed tomography (CCT) scans caused by implanted devices like defibrillators remain a critical challenge, as they degrade image quality and reduce diagnostic reliability. Traditional techniques, such as sinogram completion, mitigate these issues but often introduce new artifacts or result in a loss of detail. Deep learning (DL) techniques have emerged as more powerful alternatives. These methods require paired data—CT images with artifacts and corresponding artifact-free references—for network training. Most of these studies focus on metal artifacts caused by hip prostheses or dental fillings, while only one case in the literature addressing the cardiac field, highlighting a significant gap in this area. The aim of this study is to develop and evaluate a convolutional neural network to enhance the quality of CCT images affected by metal artifacts. A population of 40 patients with idiopathic ventricular fibrillation and implanted cardiac defibrillator are included, together with 13 family members were included in the research. A dataset of simulated data with artifacts was built starting from CCT of the family members (clean CCT) and artifacts derived from the patient scans. This simulated dataset includes a total of 3140 scans, divided into 2595 for training and 545 for test. Finally, radiomic features were extracted from the original CCT of the family members as well as from the simulated images after artifact reduction. The results demonstrate that the proposed model outperforms traditional methods, achieving superior Structural Similarity Index (SSIM), with a value of 0.889±0.04 and Peak Signal-to-Noise Ratio (PSNR), with value of 31.93±2.01, with a lower Mean Squared Error (MSE), of 1.05e-04±5.90e-05. Radiomic stability analysis reported 374 over 433 radiomic features as stable (where stability is defined by means of the intraclass correlation coefficient) when computed on the simulated images after artifact reduction. This latter results further proves the effectiveness of the neural network, as most of the radiomic features extracted from the images after artifact reduction are compatible with the features extracted from the artifact-free CT images.
Gli artefatti metallici nelle scansioni di tomografia computerizzata cardiaca (CCT) causati da dispositivi impiantati, come i defibrillatori, rappresentano una sfida critica, in quanto degradano la qualità delle immagini e riducono l'affidabilità diagnostica. Le tecniche tradizionali, come il completamento del sinogramma, mitigano questi problemi ma spesso introducono nuovi artefatti o comportano una perdita di dettagli. Le tecniche di deep learning (DL), come residual learning CNNs e CycleGAN, sono emerse come alternative più potenti. Questi metodi richiedono dati accoppiati— immagini CT con artefatti e immagini di riferimento prive di artefatti—per l’addestramento delle reti. La maggior parte degli studi si concentra sugli artefatti metallici causati da protesi d’anca o otturazioni dentali, mentre un solo caso in letteratura affronta il campo cardiaco, evidenziando una significativa lacuna in quest'area. Questa tesi esplora l'uso delle reti neurali per la riduzione degli artefatti metallici (MAR) nella tomografia computerizzata cardiaca (CCT), con particolare attenzione alla parete ventricolare sinistra, che costituisce la regione di interesse per un'ulteriore analisi radiomica. Gli artefatti metallici, causati da impianti come i defibrillatori impiantati, compromettono la qualità dell'immagine e ostacolano il processo diagnostico. Questa ricerca sviluppa e valuta una rete neurale convoluzionale per migliorare la qualità delle immagini cardiache influenzate da artefatti metallici. In questo studio sono stati inclusi 40 pazienti con fibrillazione ventricolare idiopatica e defibrillatore cardiaco impiantato, insieme a 13 famigliari. È stato costruito un dataset di dati simulati con artefatti partendo dalle CCT dei familiari (CCT pulite) e dagli artefatti derivati dalle immagini dei pazienti. Questo set di dati simulato include un totale di 3140 scansioni, divise in 2595 per l'addestramento e 545 per il test. Infine, le caratteristiche radiomiche sono state estratte dalle CCT originali dei famigliari e dalle immagini simulate dopo la riduzione degli artefatti. I risultati dimostrano che il modello proposto supera i metodi tradizionali, ottenendo un indice di similarità strutturale (SSIM) di 0.889±0.04 e un rapporto segnale-rumore di picco (PSNR) di 31.93±2.01 superiori, con un errore quadratico medio (MSE) di 1.05e-04±5.90e-05 inferiore. Inoltre, 374 features radiomiche su 433 sono risultate stabili (dove la stabilità è definita attraverso il coefficiente di correlazione intraclasse, ICC > 0.75) se calcolate sulle immagini simulate dopo la riduzione degli artefatti. Quest’ultimo risultato dimostra Ció dimostra ulteriormente l'efficacia della rete neurale, poiché la maggior parte delle features radiomiche estratte dalle immagini dopo la riduzione degli artefatti sono compatibili con le features estratte dalle immagini CT prive di artefatti.
A deep learning approach for metal artifact reduction in cardiac computed tomography: a proof-of-concept for radiomic application
BENIGNI, NICHOLAS
2023/2024
Abstract
Metal artifacts in cardiac computed tomography (CCT) scans caused by implanted devices like defibrillators remain a critical challenge, as they degrade image quality and reduce diagnostic reliability. Traditional techniques, such as sinogram completion, mitigate these issues but often introduce new artifacts or result in a loss of detail. Deep learning (DL) techniques have emerged as more powerful alternatives. These methods require paired data—CT images with artifacts and corresponding artifact-free references—for network training. Most of these studies focus on metal artifacts caused by hip prostheses or dental fillings, while only one case in the literature addressing the cardiac field, highlighting a significant gap in this area. The aim of this study is to develop and evaluate a convolutional neural network to enhance the quality of CCT images affected by metal artifacts. A population of 40 patients with idiopathic ventricular fibrillation and implanted cardiac defibrillator are included, together with 13 family members were included in the research. A dataset of simulated data with artifacts was built starting from CCT of the family members (clean CCT) and artifacts derived from the patient scans. This simulated dataset includes a total of 3140 scans, divided into 2595 for training and 545 for test. Finally, radiomic features were extracted from the original CCT of the family members as well as from the simulated images after artifact reduction. The results demonstrate that the proposed model outperforms traditional methods, achieving superior Structural Similarity Index (SSIM), with a value of 0.889±0.04 and Peak Signal-to-Noise Ratio (PSNR), with value of 31.93±2.01, with a lower Mean Squared Error (MSE), of 1.05e-04±5.90e-05. Radiomic stability analysis reported 374 over 433 radiomic features as stable (where stability is defined by means of the intraclass correlation coefficient) when computed on the simulated images after artifact reduction. This latter results further proves the effectiveness of the neural network, as most of the radiomic features extracted from the images after artifact reduction are compatible with the features extracted from the artifact-free CT images.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Benigni_Tesi.pdf
accessibile in internet per tutti a partire dal 20/11/2025
Dimensione
7.36 MB
Formato
Adobe PDF
|
7.36 MB | Adobe PDF | Visualizza/Apri |
2024_12_Benigni_ExecutiveSummary.pdf
accessibile in internet per tutti a partire dal 20/11/2025
Dimensione
3.5 MB
Formato
Adobe PDF
|
3.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231175