In response to the pressing need to combat climate change, the European Union has set an ambitious target to reach carbon neutrality by 2050. The energy sector, which accounts for a significant portion of greenhouse gas emissions, primarily from fossil fuelbased sources, is a focal area for achieving these goals. While renewable energy sources are vital to this transition, they are unlikely to suffice alone; therefore, there is increasing interest in nuclear energy, particularly in Small Modular Reactors (SMRs), defined by the IAEA as reactors generating up to 300 MW electric, that offer advantages over traditional large reactors, including enhanced safety features, modular design, and versatile applications across industries. This thesis focuses on integrated pressurized water reactors (iPWRs), a type of SMR, and their potential to redefine emergency planning zones (EPZs). Traditional EPZs are conservative in size and derived by traditional large rectors, often not tailored to specific reactor designs. This may hinder SMR deployment due to overly extensive restrictions. This study examines the evolution of nuclear safety concepts, particularly Defense in Depth, and their relevance to SMRs and, by applying an improved analytical methodology, proposes an EPZ framework adapted to SMRs’ unique characteristics, which could increase site suitability and public acceptance. Additionally, it analyzes current EPZ regulations across various countries and explores reference levels for protective actions during emergencies. Using data from the European project SASPAM-SA and the environmental impact software GENII FRAMES, it develops source terms based on SMRs’ unique safety features and through dispersion modeling and dose assessments at various distances from the release point it derives appropriately scaled-down EPZs. The proposed methodology is validated and compared with current standards.
In risposta alla pressante necessità di combattere il cambiamento climatico, l’Unione Europea ha fissato l’ambizioso obiettivo di raggiungere la neutralità carbonica entro il 2050. Il settore energetico, che rappresenta una quota significativa delle emissioni di gas serra principalmente derivanti da fonti basate sui combustibili fossili, è un’area centrale per raggiungere questi obiettivi. Sebbene le fonti di energia rinnovabile siano fondamentali per questa transizione, non sono sufficienti da sole; di conseguenza, cresce l’interesse per l’energia nucleare, in particolare per i Reattori Modulari Compatti (SMR), definiti dall’IAEA come reattori che generano fino a 300 MW elettrici. Essi ffrono vantaggi rispetto ai reattori tradizionali di grandi dimensioni, quali caratteristiche di sicurezza migliorate, design modulare e applicazioni versatili in vari settori. Questa tesi si concentra sui reattori ad acqua pressurizzata integrati (iPWR), un tipo di SMR, e sul loro potenziale per ridefinire le zone di pianificazione di emergenza (EPZ). Le EPZ tradizionali sono conservative per dimensioni e sono derivate da reattori tradizionali di grandi dimensioni, spesso non adattate ai design specifici e ciò può ostacolare la diffusione degli SMR a causa di restrizioni eccessivamente ampie. Questo studio esamina l’evoluzione dei concetti di sicurezza nucleare, in particolare la Difesa in Profondità, e la loro rilevanza per gli SMR; applicando una metodologia analitica migliorata, propone un quadro per le EPZ adattato alle caratteristiche uniche degli SMR, che potrebbe aumentare l’idoneità dei siti e l’accettazione pubblica. Inoltre, analizza le attuali normative sulle EPZ in vari paesi ed esplora i livelli di riferimento per le azioni protettive durante le emergenze. Utilizzando i dati del progetto europeo SASPAM-SA e il software di analisi dell’impatto ambientale GENII FRAMES, sviluppa termini sorgente basati sulle caratteristiche di sicurezza uniche degli SMR e, attraverso modelli di dispersione e le valutazioni delle dosi a varie distanze dal punto di rilascio, deriva EPZ ridimensionate adeguatamente. La metodologia proposta è validata e confrontata con gli standard attuali.
Evaluation of EPZ in case of severe accident of SMR
Casartelli, Elettra Sophia
2023/2024
Abstract
In response to the pressing need to combat climate change, the European Union has set an ambitious target to reach carbon neutrality by 2050. The energy sector, which accounts for a significant portion of greenhouse gas emissions, primarily from fossil fuelbased sources, is a focal area for achieving these goals. While renewable energy sources are vital to this transition, they are unlikely to suffice alone; therefore, there is increasing interest in nuclear energy, particularly in Small Modular Reactors (SMRs), defined by the IAEA as reactors generating up to 300 MW electric, that offer advantages over traditional large reactors, including enhanced safety features, modular design, and versatile applications across industries. This thesis focuses on integrated pressurized water reactors (iPWRs), a type of SMR, and their potential to redefine emergency planning zones (EPZs). Traditional EPZs are conservative in size and derived by traditional large rectors, often not tailored to specific reactor designs. This may hinder SMR deployment due to overly extensive restrictions. This study examines the evolution of nuclear safety concepts, particularly Defense in Depth, and their relevance to SMRs and, by applying an improved analytical methodology, proposes an EPZ framework adapted to SMRs’ unique characteristics, which could increase site suitability and public acceptance. Additionally, it analyzes current EPZ regulations across various countries and explores reference levels for protective actions during emergencies. Using data from the European project SASPAM-SA and the environmental impact software GENII FRAMES, it develops source terms based on SMRs’ unique safety features and through dispersion modeling and dose assessments at various distances from the release point it derives appropriately scaled-down EPZs. The proposed methodology is validated and compared with current standards.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Casartelli_Executive Summary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
789.45 kB
Formato
Adobe PDF
|
789.45 kB | Adobe PDF | Visualizza/Apri |
2024_12_Casartelli.pdf
non accessibile
Descrizione: Thesis
Dimensione
11.57 MB
Formato
Adobe PDF
|
11.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231208