The use of low-enthalpy geothermal energy through closed-loop borehole heat exchangers (BHE) represents a low-impact solution, based on a renewable energy source that is widespread worldwide. This thesis focuses on studying the most significant parameters that influence the energy performance of a vertical closed-loop borehole heat exchanger (BHE), with the aim of creating a design guide for planners, indicating the optimal distances between a row of BHE arranged perpendicular to groundwater flow, considering different hydrogeological contexts. Mathematical modeling was conducted using the updated version of the Connected Linear Network (CLN) package, introduced in the MODFLOW version known as MODFLOW-USG, which allows the use of unstructured grids and the introduction of subdomains such as the CLN itself, which introduces one-dimensional analytical elements. The BHEs are implemented based on Barbieri's thesis (Barbieri, 2020) and subsequent publication (Antelmi et al., 2021), where a BHE is modeled with two vertical wells (representing the supply and return pipes within which the heat-transfer fluid flows) and a horizontal connector, thus representing the typical "U" configuration of a vertical exchanger. For each time step, MODFLOW-USG allows for simultaneous simulation of water flow in the ground domain and heat transport associated with the operation of the BHE. In the numerical models, appropriate boundary conditions were introduced to replicate the proper functioning of a vertical geothermal exchanger and various physical and hydrogeological properties of the aquifer to simulate the main lithologies present in nature and to conduct a sensitivity analysis. The parameters investigated include flow velocity (0, 10^(-7), 〖5∙10〗^(-7), 10^(-6) e 10^(-5) m/s), thermal conductivity of the ground (1.1 and 2.3 W/mK), as well as system characteristics such as BHE depth (80 and 160 meters), spacing (from 1 to 8 meters), and the operating duration of the system (60, 120, and 180 days). Finally, results were compared as the grid's planimetric discretization varied (1.5 and 15 cm). Finally, models with a single BHE were initially developed to determine operating conditions without interference. Subsequently, models with three BHEs at variable distances (from 1 to 8 meters) were created to quantify the mutual influence on heat exchange. After establishing an "acceptable" threshold for the reduction in thermal power exchanged between the BHEs and the ground, optimal distances were selected for each parameter combination. Finally, using five-BHEs models, it was confirmed that each BHE experienced interference only from adjacent BHEs, allowing the final abacus to be constructed.
L’utilizzo di energia geotermica a bassa entalpia mediante sonde geotermiche a circuito chiuso rappresenta una soluzione a basso impatto ambientale, basata su una fonte di energia rinnovabile presente in tutto il mondo. Questo elaborato di tesi si concentra sullo studio dei parametri che influenzano maggiormente le prestazioni energetiche di una sonda geotermica verticale a circuito chiuso (BHE), con l’obiettivo di creare un abaco per i progettisti, indicante le distanze ottimali tra sonde di uno stesso impianto disposte perpendicolarmente al flusso di falda, considerando diversi possibili contesti idrogeologici. La modellazione matematica è stata condotta attraverso la versione aggiornata del pacchetto Connected Linear Network (CLN), introdotto nella versione di MODFLOW denominata MODFLOW-USG, che consente l’utilizzo di griglie non strutturate e l’introduzione di sottodomini come lo stesso CLN che introduce elementi analitici monodimensionali. La sonda geotermica è stata implementata seguendo l’elaborato di tesi di Barbieri (Barbieri, 2020) e successiva pubblicazione (Antelmi et al., 2021), ove viene modellata mediante due pozzi verticali (rappresentanti il tubo di mandata e di ritorno all’interno dei quali scorre il fluido termovettore) ed un raccordo orizzontale, rappresentando così la tipica configurazione di sonda verticale a “U”. Per ciascun passo temporale, MODFLOW-USG consente di simulare contemporaneamente il flusso idrico nel dominio di terreno e il trasporto di calore associato al funzionamento della sonda geotermica. Nei modelli numerici sono state inserite opportune condizioni al contorno per riprodurre il corretto funzionamento di una sonda geotermica verticale e varie proprietà fisiche e idrogeologiche dell’acquifero e della sonda per simulare le principali litologie presenti in natura ed effettuare un’analisi di sensitività. I parametri indagati comprendono la velocità di deflusso (0, 10^(-7), 〖5∙10〗^(-7), 10^(-6) e 10^(-5) m/s), la conducibilità termica del terreno (1.1 e 2.3 W/mK), ma anche le caratteristiche dell’impianto come la profondità delle sonde (80 e 160 metri), la distanza tra le sonde (da 1 a 8 metri), la durata di funzionamento dell’impianto (60, 120 e 180 giorni). Infine, sono stati confrontati i risultati al variare della discretizzazione planimetrica della griglia (1.5 e 15 cm). Inizialmente sono stati sviluppati modelli con una sola sonda per determinare le condizioni di lavoro in assenza di interferenze. Successivamente, sono stati realizzati modelli con tre sonde a distanze variabili (da 1 a 8 metri) per quantificare l’influenza reciproca nello scambio termico. Dopo aver stabilito una soglia “accettabile” di riduzione della potenza termica scambiata tra sonda e terreno dovuta all’interferenza tra sonde, sono state selezionate le distanze ottimali per ogni combinazione di parametri. Infine, con modelli a cinque sonde si è verificato che ciascuna sonda subisse l’interferenza solo delle sonde adiacenti, consentendo di costruire l'abaco finale.
Valutazione della distanza ottimale tra sonde geotermiche per il dimensionamento di un impianto in pompa di calore geotermica
Previtali, Daniele
2023/2024
Abstract
The use of low-enthalpy geothermal energy through closed-loop borehole heat exchangers (BHE) represents a low-impact solution, based on a renewable energy source that is widespread worldwide. This thesis focuses on studying the most significant parameters that influence the energy performance of a vertical closed-loop borehole heat exchanger (BHE), with the aim of creating a design guide for planners, indicating the optimal distances between a row of BHE arranged perpendicular to groundwater flow, considering different hydrogeological contexts. Mathematical modeling was conducted using the updated version of the Connected Linear Network (CLN) package, introduced in the MODFLOW version known as MODFLOW-USG, which allows the use of unstructured grids and the introduction of subdomains such as the CLN itself, which introduces one-dimensional analytical elements. The BHEs are implemented based on Barbieri's thesis (Barbieri, 2020) and subsequent publication (Antelmi et al., 2021), where a BHE is modeled with two vertical wells (representing the supply and return pipes within which the heat-transfer fluid flows) and a horizontal connector, thus representing the typical "U" configuration of a vertical exchanger. For each time step, MODFLOW-USG allows for simultaneous simulation of water flow in the ground domain and heat transport associated with the operation of the BHE. In the numerical models, appropriate boundary conditions were introduced to replicate the proper functioning of a vertical geothermal exchanger and various physical and hydrogeological properties of the aquifer to simulate the main lithologies present in nature and to conduct a sensitivity analysis. The parameters investigated include flow velocity (0, 10^(-7), 〖5∙10〗^(-7), 10^(-6) e 10^(-5) m/s), thermal conductivity of the ground (1.1 and 2.3 W/mK), as well as system characteristics such as BHE depth (80 and 160 meters), spacing (from 1 to 8 meters), and the operating duration of the system (60, 120, and 180 days). Finally, results were compared as the grid's planimetric discretization varied (1.5 and 15 cm). Finally, models with a single BHE were initially developed to determine operating conditions without interference. Subsequently, models with three BHEs at variable distances (from 1 to 8 meters) were created to quantify the mutual influence on heat exchange. After establishing an "acceptable" threshold for the reduction in thermal power exchanged between the BHEs and the ground, optimal distances were selected for each parameter combination. Finally, using five-BHEs models, it was confirmed that each BHE experienced interference only from adjacent BHEs, allowing the final abacus to be constructed.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Previtali.pdf
solo utenti autorizzati a partire dal 20/11/2025
Descrizione: Elaborato di tesi
Dimensione
4.54 MB
Formato
Adobe PDF
|
4.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231253