This thesis focuses on the characterization of STMicroelectronics’ (ST’s) new 9-axis MEMS Inertial Measurement Unit (IMU), developed using an innovative No SiC process. The No SiC process aims to enhance sensor performance while reducing manufacturing steps. However, potential failure mechanisms associated with this process necessitate thorough investigation. Namely, robustness, wear and adhesion. The study, conducted as part of an internship at STMicroelectronics in Milan, Italy, involved various mechanical testing sequences, including shock, drop, tumble, and vibra tion tests. These tests were followed by detailed characterization using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Transmission Electron Mi croscopy (TEM),Energy Dispersive X-ray Spectroscopy (EDX) and Capacitance-Voltage (CV) curve readings to calculate adhesion forces. An analytical model for adhesion force calculation was developed, showing outstanding linearity with morphological characteristics. Results indicated a significant correlation between changes in morphological parameters and adhesion forces, except in vibration tests. Drop and shock tests showed an almost linear correlation. SEM imaging revealed distinct morphological differences between the SiC and No SiC options, with the SiC surface appearing more porous. TEM/EDX analysis highlighted variations in oxide layer thickness, crucial for wear mechanisms. The study captured a critical moment of crack formation in the No SiC product, empha sizing the oxide layer’s importance in surface wear mechanisms. In conclusion, a root cause mechanism of wear was proposed and further validated by new incoming analysis. Future work should focus on establishing a tailor-made wear test setup and using Finite Element Method (FEM) for wear modelling and adhesion force computation.
Questa tesi si concentra sulla caratterizzazione del nuovo MEMS Inertial Measurement Unit (IMU) a 9 assi di STMicroelectronics (ST), sviluppata utilizzando un innovativo processo No SiC. Il processo No SiC mira a migliorare le prestazioni del sensore riducendo al contempo i passaggi di produzione. Tuttavia, i potenziali meccanismi di fallimento associati a questo processo richiedono un’indagine approfondita, in particolare per quanto riguarda robustezza, usura e adesione. Lo studio, condotto come parte di uno stage presso STMicroelectronics a Milano, Italia, ha coinvolto varie sequenze di test meccanici, tra cui test di shock, caduta, rotolamento e vibrazione. Questi test sono stati seguiti da una caratterizzazione dettagliata utilizzando Microscopia a Forza Atomica (AFM), Microscopia Elettronica a Scansione (SEM), Mi croscopia Elettronica a Trasmissione (TEM), Spettroscopia a Dispersione di Energia dei Raggi X (EDX) e letture delle curve Capacitance-Voltage (CV) per calcolare le forze di adesione. È stato sviluppato un modello analitico per il calcolo della forza di adesione, che ha mostrato un’eccezionale linearità con le caratteristiche morfologiche. I risultati hanno indicato una significativa correlazione tra i cambiamenti nei parametri morfologici e le forze di adesione, eccetto nei test di vibrazione. In particolare, I test di caduta e shock hanno mostrato una correlazione quasi lineare. Le immagini SEM hanno rivelato differenze morfologiche distinte tra le opzioni SiC e No SiC, con la superficie SiC che appare più porosa. L’analisi TEM/EDX ha evidenziato variazioni nello spessore dello strato di ossido, cruciale per i meccanismi di usura. Lo studio ha catturato un momento critico di formazione di crepe nel prodotto No SiC, sottolineando l’importanza dello strato di ossido nei meccanismi di usura superficiale. In conclusione, è stato proposto un meccanismo che spieghi l’usura superficiale e ulteri ormente validato da nuove analisi in arrivo. Il lavoro futuro dovrebbe concentrarsi sulla creazione di un setup di test di usura superficiale su misura e sull’utilizzo del Metodo degli Elementi Finiti (FEM) per la modellazione dell’usura e il calcolo delle forze di adesione.
Morphological and electrical characterization of MEMS inertial sensor submitted to mechanical stress test
SANTANA PINTO de MORAIS MANSO, RAFAEL JOSÉ
2023/2024
Abstract
This thesis focuses on the characterization of STMicroelectronics’ (ST’s) new 9-axis MEMS Inertial Measurement Unit (IMU), developed using an innovative No SiC process. The No SiC process aims to enhance sensor performance while reducing manufacturing steps. However, potential failure mechanisms associated with this process necessitate thorough investigation. Namely, robustness, wear and adhesion. The study, conducted as part of an internship at STMicroelectronics in Milan, Italy, involved various mechanical testing sequences, including shock, drop, tumble, and vibra tion tests. These tests were followed by detailed characterization using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Transmission Electron Mi croscopy (TEM),Energy Dispersive X-ray Spectroscopy (EDX) and Capacitance-Voltage (CV) curve readings to calculate adhesion forces. An analytical model for adhesion force calculation was developed, showing outstanding linearity with morphological characteristics. Results indicated a significant correlation between changes in morphological parameters and adhesion forces, except in vibration tests. Drop and shock tests showed an almost linear correlation. SEM imaging revealed distinct morphological differences between the SiC and No SiC options, with the SiC surface appearing more porous. TEM/EDX analysis highlighted variations in oxide layer thickness, crucial for wear mechanisms. The study captured a critical moment of crack formation in the No SiC product, empha sizing the oxide layer’s importance in surface wear mechanisms. In conclusion, a root cause mechanism of wear was proposed and further validated by new incoming analysis. Future work should focus on establishing a tailor-made wear test setup and using Finite Element Method (FEM) for wear modelling and adhesion force computation.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Santana_Executive_Summary_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
3.47 MB
Formato
Adobe PDF
|
3.47 MB | Adobe PDF | Visualizza/Apri |
2024_12_Santana_Thesis_01.pdf
non accessibile
Descrizione: Thesis
Dimensione
46.58 MB
Formato
Adobe PDF
|
46.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231267