The valuation of callable financial instruments is inherently complex due to the embedded optionality. This complexity is further amplified when considering Callable Credit-Linked Notes (CCLN), which combine features of both credit derivatives and callable fixed-income securities. Such instruments require a methodology that simultaneously addresses credit risk, arising from the possibility of default by the issuer and/or the reference entity, as well as interest rate risk, which influences cash flows and the valuation of the embedded call option. This study was conducted in collaboration with a financial technology company, and it led to the extension of the Hull-White composite model. The model, originally developed for the pricing of callable bonds, was adapted to evaluate CCLN. This approach introduces a new term structure that modifies the zero-coupon curve by integrating credit spreads, recovery rates, and the callable feature specific to the CCLN. This new discount curve is also designed to account for the correlation between the counterparties of the CCLN, and its diffusion enables the pricing of the CCLN using a numerical method capable of solving the classical Hull-White one-factor partial differential equation (PDE). These findings are supported by a case study that verifies the applicability of the approach and demonstrates its relevance despite the limited market data available.
La valutazione degli strumenti finanziari callable è intrinsecamente complessa a causa dell'opzionalità incorporata. Questa complessità è ulteriormente amplificata quando si considerano le Callable Credit-Linked Notes (CCLN), che combinano le caratteristiche sia dei derivati di credito che dei titoli a reddito fisso callable. Tali strumenti richiedono una metodologia che affronti contemporaneamente il rischio di credito, derivante dalla possibilità di insolvenza dell'emittente e/o dell'entità di riferimento, e il rischio di tasso di interesse, che influenza i flussi di cassa e la valutazione dell'opzione call incorporata. Questo studio è stato condotto in collaborazione con una società di software in ambito finanziario e ha portato all'estensione del modello composito di Hull-White. Il modello, originariamente sviluppato per il pricing delle obbligazioni callable, è stato adattato per valutare la CCLN. Questo approccio introduce una nuova struttura a termine che modifica la curva zero-coupon integrando gli spread di credito, i tassi di recupero e la caratteristica callable specifica della CCLN. Questa nuova curva di sconto è stata progettata anche per tenere conto della correlazione tra le controparti della CCLN e la sua diffusione consente di prezzare la CCLn utilizzando un metodo numerico per risolvere l'equazione differenziale alle derivate parziali (EDP) di Hull-White. Il progetto è supportato da un caso di studio che verifica l'applicabilità dell'approccio e ne dimostra la rilevanza nonostante i limitati dati di mercato disponibili.
Extension of the Hull-White composite model for Callable Bonds to Callable Credit-Linked Notes
Cojutti, Francesco
2023/2024
Abstract
The valuation of callable financial instruments is inherently complex due to the embedded optionality. This complexity is further amplified when considering Callable Credit-Linked Notes (CCLN), which combine features of both credit derivatives and callable fixed-income securities. Such instruments require a methodology that simultaneously addresses credit risk, arising from the possibility of default by the issuer and/or the reference entity, as well as interest rate risk, which influences cash flows and the valuation of the embedded call option. This study was conducted in collaboration with a financial technology company, and it led to the extension of the Hull-White composite model. The model, originally developed for the pricing of callable bonds, was adapted to evaluate CCLN. This approach introduces a new term structure that modifies the zero-coupon curve by integrating credit spreads, recovery rates, and the callable feature specific to the CCLN. This new discount curve is also designed to account for the correlation between the counterparties of the CCLN, and its diffusion enables the pricing of the CCLN using a numerical method capable of solving the classical Hull-White one-factor partial differential equation (PDE). These findings are supported by a case study that verifies the applicability of the approach and demonstrates its relevance despite the limited market data available.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Cojutti_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
714.83 kB
Formato
Adobe PDF
|
714.83 kB | Adobe PDF | Visualizza/Apri |
2024_12_Cojutti_Tesi.pdf
non accessibile
Descrizione: Tesi formato articolo scientifico
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231268