Energy communities (ECs) are reshaping power systems by fostering decentralized energy production, enhancing grid flexibility and resilience. Distributed energy resources (DERs), such as rooftop solar, reduce reliance on central power plants and assist Distribution System Operators (DSOs) in managing constraints. However, large-scale renewable integration poses challenges, including grid stability issues, voltage fluctuations, and reverse power flows. This thesis introduces a methodology to evaluate the topological features of real-life medium voltage (MV) distribution networks, characterizing them in terms of line lengths, impedance, cross-sections and branching features, and then investigates how ECs with increasing additional generation could impact them. Finally, correlations among the two studies are considered. Using Monte Carlo simulations, diverse PV-based (Photovoltaicbased) EC configurations are examined, adjusting generator size, voltage control methods, quantity, and points of common coupling. The approach evaluates configurations at increasing renewable penetration, expressed as additional MW of PV generation with respect to the peak load demand in percentage. It then leverages hourly load flow simulations over a year to track losses, line loading, and steady state voltage constraints. Results indicate that urban networks, with compact linear structures, larger conductor cross-sections, and higher load density accommodate up to 70% PV penetration minimizing losses, while rural networks perform optimally at 50%, beyond which losses rise. The rural network, more branched and with higher impedance, is also more susceptible to overvoltages, unlike the urban network, which maintains stability at higher PV levels. These findings underscore the significance of network topology in optimal DER integration and suggest strategies for sustainable EC development. Applied to two distinct networks, this methodology establishes a foundation for further research on intermediate network types and offers insights toward reference models for resilient, efficient DER integration across diverse grid structures.
Le comunità energetiche (CE) stanno trasformando i sistemi elettrici attraverso una produzione energetica decentralizzata, migliorando flessibilità e resilienza delle reti. Le risorse energetiche distribuite, come gli impianti fotovoltaici residenziali, riducono la dipendenza dalle centrali elettriche centrali e supportano gli operatori di rete di distribuzione (DSO) nella gestione dei vincoli. Tuttavia, l’integrazione su larga scala delle energie rinnovabili comporta sfide come instabilità della rete, fluttuazioni di tensione e flussi di potenza inversi. Questa tesi propone una metodologia per analizzare le caratteristiche topologiche delle reti di distribuzione in media tensione (MT), in termini di lunghezza delle linee, impedenza, sezione e grado di ramificazione, e valutare l’impatto delle CE con crescente generazione aggiuntiva. Tramite simulazioni Monte Carlo vengono esaminate configurazioni di CE basate su impianti fotovoltaici, considerando dimensioni dei generatori, metodi di controllo della tensione, punti di connessione e livelli crescenti di penetrazione rinnovabile, espressa in percentuale rispetto alla domanda massima di carico. Simulazioni annuali con risoluzione oraria analizzano perdite, carico delle linee e vincoli di tensione in regime stazionario. I risultati mostrano che le reti urbane, grazie alla loro compattezza, linearità, e maggiore densità di carico, possono gestire fino al 70% di penetrazione minimizzando le perdite, mentre le reti rurali sono esercite in modo ottimale fino al 50%, oltre il quale le perdite aumentano. Le reti rurali, con impedenza più alta e maggiore ramificazione, sono più vulnerabili a sovratensioni, mentre quelle urbane mantengono stabilità a livelli maggiori di penetrazione. Applicata a due reti distinte, questa metodologia evidenzia l’importanza della topologia nell’integrazione delle Fonti Energetiche Rinnovabili (FER) e suggerisce strategie per uno sviluppo sostenibile delle CE, ponendo basi per future ricerche su reti intermedie e modelli di riferimento per integrazioni resilienti.
Energy communities' impact on medium voltage distribution networks
BARBAGELATA, LUCIA
2023/2024
Abstract
Energy communities (ECs) are reshaping power systems by fostering decentralized energy production, enhancing grid flexibility and resilience. Distributed energy resources (DERs), such as rooftop solar, reduce reliance on central power plants and assist Distribution System Operators (DSOs) in managing constraints. However, large-scale renewable integration poses challenges, including grid stability issues, voltage fluctuations, and reverse power flows. This thesis introduces a methodology to evaluate the topological features of real-life medium voltage (MV) distribution networks, characterizing them in terms of line lengths, impedance, cross-sections and branching features, and then investigates how ECs with increasing additional generation could impact them. Finally, correlations among the two studies are considered. Using Monte Carlo simulations, diverse PV-based (Photovoltaicbased) EC configurations are examined, adjusting generator size, voltage control methods, quantity, and points of common coupling. The approach evaluates configurations at increasing renewable penetration, expressed as additional MW of PV generation with respect to the peak load demand in percentage. It then leverages hourly load flow simulations over a year to track losses, line loading, and steady state voltage constraints. Results indicate that urban networks, with compact linear structures, larger conductor cross-sections, and higher load density accommodate up to 70% PV penetration minimizing losses, while rural networks perform optimally at 50%, beyond which losses rise. The rural network, more branched and with higher impedance, is also more susceptible to overvoltages, unlike the urban network, which maintains stability at higher PV levels. These findings underscore the significance of network topology in optimal DER integration and suggest strategies for sustainable EC development. Applied to two distinct networks, this methodology establishes a foundation for further research on intermediate network types and offers insights toward reference models for resilient, efficient DER integration across diverse grid structures.File | Dimensione | Formato | |
---|---|---|---|
Thesis.pdf
accessibile in internet per tutti a partire dal 19/11/2025
Descrizione: Thesis
Dimensione
8.13 MB
Formato
Adobe PDF
|
8.13 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary_Barbagelata_Lucia.pdf
accessibile in internet per tutti a partire dal 19/11/2025
Descrizione: Executive Summary
Dimensione
559.22 kB
Formato
Adobe PDF
|
559.22 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231286