This thesis focuses on the aerothermal analysis of the radiative shock layer generated around the heat shield of atmospheric entry vehicles. The study of radiative heating is usually neglected in practice, as conventional entry velocities from Low Earth Orbit (LEO) are not high enough to trigger the onset of radiative mechanisms. Nevertheless, the increase of space missions towards the lunar vicinity sparked a renewed interest on this topic. The focus of this research is cast on the two re-entry capsules developed by The Exploration Company: Nyx Earth, conceived for transportation of equipment and crews to LEO, and Nyx Moon, designed to travel to the lunar environment and back to Earth, both re-entering at hypersonic velocity through the atmosphere. The present work presents two main objectives: provide a reliable estimate of the wall-directed heat flux due to radiative mechanisms in the framework of an entry from a lunar orbit, and confirm that this thermal contribution is negligible in the case of an entry from a LEO orbit. The first part of this thesis offers a review of the equations governing hypersonic entry flows and radiation mechanisms, establishing a foundation for the numerical tools employed. CFD calculations have been realised thanks to the DLR solver TAU, which allows to solve the flow field considering several different gas models and degrees of thermochemical equilibrium. The evaluation of radiative heating has been conducted thanks to the NEQAIR code developed by NASA. Radiation transport is modelled thanks to an approximated 1D tangent slab model, which is reliable enough close to the stagnation point, but can lead to deviations up to 30% at the edges of the heat shield. The accuracy of this method and the soundness of the workflow has been proven thanks to the comparison with the flight measurements issued from the FIRE- II entry experiment. The radiative heating of the Nyx Moon capsule has been studied at a trajectory point exhibiting the highest convective heat flux, supposed to be the most critical for the ablative heat shield. Several boundary conditions have been compared, and different thermochemical equilibrium models are taken in consideration. The results of this thesis provide a thorough understanding of the issues involved with radiation and represent a first evaluation of the overall heat flux balance for atmospheric entry from the lunar environment. These insights will pave the way for the optimisation of thermal protection systems on future missions.
Questa tesi si concentra sull’analisi aerotermica dello shock layer radiativo generato intorno allo scudo termico di un veicolo di rientro atmosferico. Lo studio del riscaldamento radiativo è solitamente trascurato nella pratica, poiché le velocità di rientro convenzionali da orbite Low Earth Orbit (LEO) non sono sufficientemente elevate da innescare meccanismi radiativi. Tut- tavia, l’aumento delle missioni spaziali verso le vicinanze lunari ha riacceso l’interesse per questo argomento. Il fulcro di questa ricerca è posto sulle due capsule di rientro sviluppate da The Exploration Company: Nyx Earth, concepita per il trasporto di attrezzature ed equipaggi verso LEO, e Nyx Moon, progettata per viaggiare verso orbite lunari e tornare sulla Terra, entrambe rientrando in atmosfera a velocità ipersonica. Il presente lavoro presenta due obiettivi principali: fornire una stima affidabile del flusso termico diretto alla parete dovuto ai meccanismi radiativi nel contesto di un rientro da un’orbita lunare, e confermare che questo contributo termico è trascurabile nel caso di un rientro da un’orbita LEO. La prima parte di questa tesi offre un ripasso delle equazioni che governano i flussi di rientro ipersonici e i meccanismi radiativi, stabilendo una base per gli strumenti numerici impiegati. I calcoli CFD sono stati realizzati grazie al codice TAU del DLR, che permette di risolvere il campo di flusso considerando diversi modelli di gas e gradi di equilibrio termo-chimico. La valutazione del riscaldamento radiativo è stata condotta grazie al codice NEQAIR sviluppato dalla NASA. Il trasporto radiativo è modellato grazie a un modello approssimato 1D tangent-slab, che risulta sufficientemente affidabile vicino al punto di ristagno, ma può portare a deviazioni fino al 30 %. L’accuratezza di questo metodo é stata dimostrata grazie al confronto con le misurazioni di volo ottenute dall’esperimento FIRE-II. L’irraggiamento sulla capsula Nyx Moon è stato studiato nel punto della traiettoria che esibisce il flusso termico convettivo più alto, considerato il più critico per lo scudo termico ablativo. Sono state confrontate diverse condizioni al contorno e sono stati considerati differenti modelli di equilibrio termo-chimico. I risultati di questa tesi forniscono una comprensione approfondita delle problematiche legate alla radiazione e rappresentano una prima valutazione del bilancio complessivo del flusso termico per il rientro atmosferico dall’ambiente lunare. Queste conclusioni permetteranno di ottimizzare i sistemi di protezione termica nelle missioni future.
Analysis of the radiative heating on an hypersonic entry capsule
OLIVA, GIUSEPPE
2023/2024
Abstract
This thesis focuses on the aerothermal analysis of the radiative shock layer generated around the heat shield of atmospheric entry vehicles. The study of radiative heating is usually neglected in practice, as conventional entry velocities from Low Earth Orbit (LEO) are not high enough to trigger the onset of radiative mechanisms. Nevertheless, the increase of space missions towards the lunar vicinity sparked a renewed interest on this topic. The focus of this research is cast on the two re-entry capsules developed by The Exploration Company: Nyx Earth, conceived for transportation of equipment and crews to LEO, and Nyx Moon, designed to travel to the lunar environment and back to Earth, both re-entering at hypersonic velocity through the atmosphere. The present work presents two main objectives: provide a reliable estimate of the wall-directed heat flux due to radiative mechanisms in the framework of an entry from a lunar orbit, and confirm that this thermal contribution is negligible in the case of an entry from a LEO orbit. The first part of this thesis offers a review of the equations governing hypersonic entry flows and radiation mechanisms, establishing a foundation for the numerical tools employed. CFD calculations have been realised thanks to the DLR solver TAU, which allows to solve the flow field considering several different gas models and degrees of thermochemical equilibrium. The evaluation of radiative heating has been conducted thanks to the NEQAIR code developed by NASA. Radiation transport is modelled thanks to an approximated 1D tangent slab model, which is reliable enough close to the stagnation point, but can lead to deviations up to 30% at the edges of the heat shield. The accuracy of this method and the soundness of the workflow has been proven thanks to the comparison with the flight measurements issued from the FIRE- II entry experiment. The radiative heating of the Nyx Moon capsule has been studied at a trajectory point exhibiting the highest convective heat flux, supposed to be the most critical for the ablative heat shield. Several boundary conditions have been compared, and different thermochemical equilibrium models are taken in consideration. The results of this thesis provide a thorough understanding of the issues involved with radiation and represent a first evaluation of the overall heat flux balance for atmospheric entry from the lunar environment. These insights will pave the way for the optimisation of thermal protection systems on future missions.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Oliva_Tesi_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo Tesi
Dimensione
24.38 MB
Formato
Adobe PDF
|
24.38 MB | Adobe PDF | Visualizza/Apri |
2024_12_Oliva_Executive_Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
5.25 MB
Formato
Adobe PDF
|
5.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231324