The future of spaceborne observations increasingly relies on reducing payload size while maintaining high-performance standards. The miniaturization of satellites strongly depends on deployment technologies for satellite appendages, enabling significant volume reduction and, consequently, lowering the cost of in-orbit commissioning. As a result, there is significant interest in developing devices to improve the compactness of space structures. Current advancements in the field are focused on passive deployment methods, such as elastic elements and shape control devices as they offer simpler and more reliable alternatives to conventional electric actuators that can introduce higher complexity, deterioration and failure risks. This thesis proposes a Shape Memory Alloy (SMA)-based actuator mechanism to deploy DORA (Deployable Optics for Remote Sensing Applications), a deployable telescope for Earth observation from LEO orbits. The selected technology is promising due to its low power consumption, cleanliness, low vibration levels during actuation and already proven flight heritage. Moreover, the designed actuator has to be activated just once in orbit, replacing the linear electric actuators selected in previous studies, which were not intended to be used in space. The objective is to develop and test an SMA actuator to move the secondary mirror of the telescope from its stowed to operational configuration. A design exploiting the Shape Memory Effect (SME) of a Nitinol wire actuated through the Joule effect able to rotate the telescope leg hinge is chosen. Wire parameters are designed according to the calculated torque requirements and geometry constraints. A thermal balance model is developed to determine the required power for the actuation, for both in-orbit and in-ground conditions. The first evaluation ensures compliance with the power budget, whereas the second one facilitates terrestrial testing. Experimental testing is conducted to evaluate SME performance of the Nitinol wire, in terms of strain and recovery. Finally, the SMA actuator is integrated into a simplified mockup, where deployment motion is measured and analyzed to validate the design.
Il futuro delle osservazioni spaziali è sempre più orientato alla riduzione delle dimensioni dei payloads, mantenendo al contempo elevati standard prestazionali. La miniaturizzazione dei satelliti dipende da tecnologie avanzate di dispiegamento le quali riducono il volume e quindi i costi di lancio. I progressi nel settore sono orientati verso metodi di dispiegamento passivi, come elementi elastici e dispositivi a controllo di forma poiché offrono alternative più semplici e affidabili rispetto agli attuatori elettrici convenzionali, i quali introducono maggiore complessità, deterioramento e rischi di guasto. Questa tesi propone un meccanismo di attuazione basato su leghe a memoria di forma (SMA) per il dispiegamento di DORA (Deployable Optics for Remote Sensing Applications), un telescopio per l'osservazione terrestre da orbite LEO. La tecnologia selezionata è promettente per il basso consumo energetico, la robustezza, i bassi livelli di vibrazione durante l'attuazione e l’affidabilità già dimostrata in contesti di volo. L’attuatore deve essere attivato una volta in orbita, sostituendo gli attuatori elettrici lineari scelti in studi precedenti e non destinati all' uso nello spazio. L’obiettivo è sviluppare un attuatore SMA per muovere lo specchio secondario del telescopio dalla configurazione compatta a quella operativa. È stato scelto un design che sfrutta l'effetto memoria di forma (SME) di un filo di Nitinol attuato tramite effetto Joule, capace di ruotare la cerniera alla base delle gambe del telescopio e consentirne l’apertura. I parametri del filo sono progettati in base ai requisiti di coppia e ai vincoli geometrici. È stato sviluppato un modello di bilancio termico per determinare la potenza di attuazione, sia in condizioni orbitali che a terra. La prima valutazione garantisce la conformità al budget energetico della missione, mentre la seconda agevola i test in laboratorio. I test sperimentali vengono condotti per valutare le prestazioni SME del filo di Nitinol in termini di deformazione e recupero. Infine, l'attuatore SMA viene integrato in un mockup in cui la dinamica di dispiegamento viene misurata e analizzata per validare il progetto.
Design and characterization of an sma actuator for a deployable space telescope
Baraglia, Andrea
2023/2024
Abstract
The future of spaceborne observations increasingly relies on reducing payload size while maintaining high-performance standards. The miniaturization of satellites strongly depends on deployment technologies for satellite appendages, enabling significant volume reduction and, consequently, lowering the cost of in-orbit commissioning. As a result, there is significant interest in developing devices to improve the compactness of space structures. Current advancements in the field are focused on passive deployment methods, such as elastic elements and shape control devices as they offer simpler and more reliable alternatives to conventional electric actuators that can introduce higher complexity, deterioration and failure risks. This thesis proposes a Shape Memory Alloy (SMA)-based actuator mechanism to deploy DORA (Deployable Optics for Remote Sensing Applications), a deployable telescope for Earth observation from LEO orbits. The selected technology is promising due to its low power consumption, cleanliness, low vibration levels during actuation and already proven flight heritage. Moreover, the designed actuator has to be activated just once in orbit, replacing the linear electric actuators selected in previous studies, which were not intended to be used in space. The objective is to develop and test an SMA actuator to move the secondary mirror of the telescope from its stowed to operational configuration. A design exploiting the Shape Memory Effect (SME) of a Nitinol wire actuated through the Joule effect able to rotate the telescope leg hinge is chosen. Wire parameters are designed according to the calculated torque requirements and geometry constraints. A thermal balance model is developed to determine the required power for the actuation, for both in-orbit and in-ground conditions. The first evaluation ensures compliance with the power budget, whereas the second one facilitates terrestrial testing. Experimental testing is conducted to evaluate SME performance of the Nitinol wire, in terms of strain and recovery. Finally, the SMA actuator is integrated into a simplified mockup, where deployment motion is measured and analyzed to validate the design.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Baraglia.pdf
non accessibile
Descrizione: Testo Tesi
Dimensione
7.21 MB
Formato
Adobe PDF
|
7.21 MB | Adobe PDF | Visualizza/Apri |
2024_12_Baraglia_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231326