The rapid evolution of medical technologies in minimally invasive cardiac surgery, particularly in treating mitral regurgitation through Transcatheter Edge-to-Edge Repair (TEER), has gained popularity. However, these procedures, such as the MitraClip™ operation, require high levels of technical skill. In fact, in addition to catheter manipulation, clinicians must navigate complex medical imaging techniques that lack spatial perception. This is particularly challenging given the delicate nature of the procedure, which involves intricate cardiac structures. This thesis develops a Mixed Reality (MR) training system to enhance the MitraClip™ procedure using HoloLens2 as the head-mounted device. The system features visual feedback that guides trainees in navigating the catheter to the mitral valve while avoiding collisions with atrial structures, using a 3D MR simulator with inter active holograms to improve spatial awareness and precision in an immersive environment. The research includes a computationally efficient Piecewise Constant Curvature (PCC) model for simulating catheter movement, balancing accuracy with real-time feasibility. In a study with 20 participants, the MR simulator was shown to improve performance in execution time, trajectory deviation, and collision avoidance. Real-time feedback further enhanced procedural proficiency, presenting MR-based training as a promising method for reducing the learning curve in complex cardiac procedures. Results highlight that MR training tools could improve the safety and effectiveness of mitral regurgitation treatments by improving clinicians’ skills, lowering the need for hands-on training, and contributing to better patient outcomes. The study also underscores the PCC model’s value in accurately simulating catheter behaviour, further emphasizing MR systems’ potential to enhance surgical results and reduce healthcare costs by accelerating skill acquisition for minimally invasive procedures.
La rapida evoluzione delle tecnologie mediche per la chirurgia cardiaca minimamente invasiva, in particolare nel contesto del trattamento del rigurgito mitralico tramite la riparazione transcatetere Edge-to-Edge (TEER), ha guadagnato popolarità. Tuttavia, tali procedure, come l’operazione MitraClip™, richiedono elevate competenze tecniche. Infatti, oltre alla manipolazione del catetere, i clinici devono confrontarsi con tecniche di imaging che non forniscono una percezione spaziale. Si tratta di una sfida considerevole anche a causa della complessità della navigazione tra le delicate strutture cardiache. Questa tesi sviluppa un sistema per la formazione chirurgica che sfrutta la Realtà Mista (MR) per migliorare l’esecuzione della procedura MitraClip™. Il sistema offre un feedback visivo per guidare i tirocinanti nella navigazione del catetere fino alla valvola mitrale, evitando collisioni con le strutture atriali e, utilizzando un simulatore 3D MR con ologrammi interattivi, si può migliorare la consapevolezza spaziale e la precisione. La ricerca include un modello Piecewise Constant Curvature (PCC) efficiente per simulare il movimento del catetere, bilanciando precisione ed esecuzione in tempo reale. In uno studio con 20 partecipanti, il simulatore MR ha dimostrato di migliorare le prestazioni in termini di tempo, deviazione di traiettoria e evitamento delle collisioni. Il feedback in tempo reale ha inoltre migliorato la performance procedurale, rendendo l’addestramento basato su MR una metodologia promettente per ridurre la curva di apprendimento nelle procedure cardiache complesse. I risultati evidenziano che la realtà mista può aumentare sicurezza ed efficacia dei trattamenti per il rigurgito mitralico, migliorando le abilità dei clinici e riducendo la necessità di una formazione pratica prolungata, portando infine a risultati migliori per i pazienti. Lo studio sottolinea anche il valore del modello PCC nella simulazione del comportamento del catetere, enfatizzando infine il potenziale dei sistemi di realtà aumentata nel migliorare gli esiti chirurgici e ridurre i costi sanitari, accelerando l’acquisizione di competenze per procedure minimamente invasive.
Development and evaluation of a mixed reality training system for transcatheter Edge-to-Edge Repair (TEER) procedure
Tombini, Ingrid
2023/2024
Abstract
The rapid evolution of medical technologies in minimally invasive cardiac surgery, particularly in treating mitral regurgitation through Transcatheter Edge-to-Edge Repair (TEER), has gained popularity. However, these procedures, such as the MitraClip™ operation, require high levels of technical skill. In fact, in addition to catheter manipulation, clinicians must navigate complex medical imaging techniques that lack spatial perception. This is particularly challenging given the delicate nature of the procedure, which involves intricate cardiac structures. This thesis develops a Mixed Reality (MR) training system to enhance the MitraClip™ procedure using HoloLens2 as the head-mounted device. The system features visual feedback that guides trainees in navigating the catheter to the mitral valve while avoiding collisions with atrial structures, using a 3D MR simulator with inter active holograms to improve spatial awareness and precision in an immersive environment. The research includes a computationally efficient Piecewise Constant Curvature (PCC) model for simulating catheter movement, balancing accuracy with real-time feasibility. In a study with 20 participants, the MR simulator was shown to improve performance in execution time, trajectory deviation, and collision avoidance. Real-time feedback further enhanced procedural proficiency, presenting MR-based training as a promising method for reducing the learning curve in complex cardiac procedures. Results highlight that MR training tools could improve the safety and effectiveness of mitral regurgitation treatments by improving clinicians’ skills, lowering the need for hands-on training, and contributing to better patient outcomes. The study also underscores the PCC model’s value in accurately simulating catheter behaviour, further emphasizing MR systems’ potential to enhance surgical results and reduce healthcare costs by accelerating skill acquisition for minimally invasive procedures.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Tombini_tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Elaborato Tesi
Dimensione
13.74 MB
Formato
Adobe PDF
|
13.74 MB | Adobe PDF | Visualizza/Apri |
2024_12_Tombini_ExecutiveSummary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
4.1 MB
Formato
Adobe PDF
|
4.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231327