Metal additive manufacturing (AM) is transforming the aerospace industry, creating unprecedented opportunities for innovation and optimization in component design and manufacturing processes. This advanced technology enables the production of topologyoptimized parts, which facilitate lightweight designs while integrating multiple components into a single structure. Despite these advancements, understanding the fatigue behavior of materials produced via AM remains a critical challenge in meeting the stringent reliability requirements of the aerospace sector. Scalmalloy®, a high-strength, lightweight, and corrosion-resistant aluminum alloy developed by APWorks, a subsidiary of Airbus, represents a groundbreaking material specifically designed for AM applications. Renowned for its exceptional static and fatigue mechanical properties, Scalmalloy® shows immense potential for aerospace applications. However, its fatigue behavior is not yet as thoroughly characterized as that of conventional aluminum alloys. This study aims to address this gap by characterizing the fatigue behavior of Scalmalloy® and evaluating its performance in a real aerospace component. Fatigue tests were conducted on specimens manufactured in di erent build orientations (vertical and 55deg) with surface conditions in net shape and sandblasted states. Advanced techniques, including computed tomography (CT) scanning and fractographic analyses, were utilized to quantify internal defects and assess their impact on fatigue life. The results reveal that the sandblasting treatment induced compressive residual stresses, which signi cantly enhanced the material's fatigue performance. Furthermore, the study validated the e ectiveness of defect size based evaluation methods in predicting the fatigue behavior of additively manufactured materials. This research not only advances the understanding of Scalmalloy®'s fatigue behavior but also provides practical insights for optimizing the design and manufacturing of aerospace components. By leveraging the unique properties of this innovative material, the study contributes to the broader adoption of additive manufacturing in high performance aerospace applications.
La manifattura additiva (AM) dei metalli sta trasformando l'industria aerospaziale, creando opportunità senza precedenti per l'innovazione e l'ottimizzazione nella progettazione dei componenti e nei processi produttivi. Questa tecnologia avanzata consente la produzione di parti ottimizzate topologicamente, facilitando design leggeri e integrando più componenti in una singola struttura. Nonostante questi progressi, la comprensione del comportamento a fatica dei materiali prodotti tramite AM rimane una sfida cruciale per soddisfare i rigorosi requisiti di a dabilità richiesti dal settore aerospaziale. Lo Scalmalloy®, una lega di alluminio ad alta resistenza, leggera e resistente alla corrosione, sviluppata da APWorks, una filiale di Airbus, rappresenta un materiale innovativo progettato specificamente per applicazioni di manifattura additiva. Nota per le sue eccezionali proprietà meccaniche statiche e a fatica, lo Scalmalloy® mostra un enorme potenziale per le applicazioni aerospaziali. Tuttavia, il suo comportamento a fatica non è ancora caratterizzato in modo così approfondito come quello delle leghe di alluminio tradizionali. Questo studio si propone di colmare questa lacuna caratterizzando il comportamento a fatica dello Scalmalloy® e valutandone le prestazioni in un componente aerospaziale reale. Sono stati condotti test di fatica su campioni realizzati in diverse orientazioni di costruzione (verticale e a 55deg) con condizioni superficiali in stato grezzo e sabbiate. Tecniche avanzate, tra cui la tomogra a computerizzata (CT) e analisi frattogra che, sono state utilizzate per quanti care i difetti interni e valutarne l'impatto sulla vita a fatica. I risultati hanno dimostrato che il trattamento di sabbiatura ha indotto tensioni residue di compressione, migliorando significativamente le prestazioni a fatica del materiale. Inoltre, lo studio ha validato l'effcacia dei metodi di valutazione basati sulla dimensione dei difetti per prevedere il comportamento a fatica dei materiali prodotti tramite AM. Questa ricerca non solo avanza la comprensione del comportamento a fatica dello Scalmalloy®, ma fornisce anche indicazioni pratiche per ottimizzare la progettazione e la produzione di componenti aerospaziali. Sfruttando le proprietà uniche di questo materiale innovativo, lo studio contribuisce all'adozione più ampia della manifattura additiva nelle applicazioni aerospaziali ad alte prestazioni.
Fatigue assessment of an Al-based alloy manufactued by LPBF and its application to an aerospace component
Panza, Alessandro
2023/2024
Abstract
Metal additive manufacturing (AM) is transforming the aerospace industry, creating unprecedented opportunities for innovation and optimization in component design and manufacturing processes. This advanced technology enables the production of topologyoptimized parts, which facilitate lightweight designs while integrating multiple components into a single structure. Despite these advancements, understanding the fatigue behavior of materials produced via AM remains a critical challenge in meeting the stringent reliability requirements of the aerospace sector. Scalmalloy®, a high-strength, lightweight, and corrosion-resistant aluminum alloy developed by APWorks, a subsidiary of Airbus, represents a groundbreaking material specifically designed for AM applications. Renowned for its exceptional static and fatigue mechanical properties, Scalmalloy® shows immense potential for aerospace applications. However, its fatigue behavior is not yet as thoroughly characterized as that of conventional aluminum alloys. This study aims to address this gap by characterizing the fatigue behavior of Scalmalloy® and evaluating its performance in a real aerospace component. Fatigue tests were conducted on specimens manufactured in di erent build orientations (vertical and 55deg) with surface conditions in net shape and sandblasted states. Advanced techniques, including computed tomography (CT) scanning and fractographic analyses, were utilized to quantify internal defects and assess their impact on fatigue life. The results reveal that the sandblasting treatment induced compressive residual stresses, which signi cantly enhanced the material's fatigue performance. Furthermore, the study validated the e ectiveness of defect size based evaluation methods in predicting the fatigue behavior of additively manufactured materials. This research not only advances the understanding of Scalmalloy®'s fatigue behavior but also provides practical insights for optimizing the design and manufacturing of aerospace components. By leveraging the unique properties of this innovative material, the study contributes to the broader adoption of additive manufacturing in high performance aerospace applications.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Panza_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
66.41 MB
Formato
Adobe PDF
|
66.41 MB | Adobe PDF | Visualizza/Apri |
2024_12_Panza_Executive Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
6.19 MB
Formato
Adobe PDF
|
6.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231333