In recent years, advancements in Additive Manufacturing technologies, combined with the increased versatility offered by Computer-Aided Design systems, have promoted the development and fabrication of the so-called metamaterials. These are defined as structures designed to exhibit physical properties that can surpass those of conventional materials and whose behavior is derived from their unique topology. In such a context, this thesis aims to design and analyze the linear-elastic properties of 2.5D thin-walled structures with an apparently disordered configuration. It has been observed that certain structures found in nature, which possess superior mechanical properties, exhibit a heterogeneous topology in which structural disorder appears to be dominant. Building on this foundation, digital and 3D-printed structures were created, implementing a parametric design approach. Specifically, through the use of dimensionless variables, structural disorder was introduced and adjusted on a Voronoi tessellation. Additionally, the connections between nodes of the reticular structure have been altered to include non-straight (tortuous) configurations. Through a parametric study conducted using finite element analyses, the linear-elastic behavior of structures subjected to quasi-static compression was numerically evaluated, effectively linking the design space to the property space. The numerical results, based on the evaluation of the elastic modulus and Poisson’s ratio, indicate that, for given values of volume fractions, an increase in the degree of structural disorder causes a decrease in the elastic modulus and an increase in Poisson’s ratio, both exhibiting a linear trend. This thesis also includes the experimental validation of a subset of the numerically analyzed structures. They have been 3D-printed using the Polylactic Acid material and the Fused Deposition Modeling technology and tested under quasi-static compression conditions. The experimental results show good agreement with the numerical ones but further investigations are needed.
Negli ultimi anni, i progressi nelle tecnologie di Additive Manufacturing, uniti alla sempre maggiore versatilità offerta dai sistemi di progettazione assistita dal calcolatore, hanno promosso lo sviluppo e la fabbricazione dei cosiddetti metamateriali. Quest’ultimi sono definiti come strutture progettate per ottenere proprietà fisiche che possono superare quelle dei materiali convenzionali ed il cui comportamento è legato alla loro specifica topologia. In tale contesto, la tesi si propone di progettare e analizzare le proprietà elastico-lineari di strutture 2.5D a pareti sottili, caratterizzate da una configurazione apparentemente disordinata. È stato infatti osservato che alcune strutture presenti in natura, dotate di proprietà meccaniche superiori, presentano una topologia eterogenea in cui il disordine strutturale sembra predominare. Partendo da queste basi, sono stati sviluppati i modelli digitali e fisici di tali strutture implementano un approccio progettuale parametrico. In particolare, attraverso l’uso di appositi parametri adimensionali, è stato possibile introdurre e regolare il disordine strutturale in una tassellazione di tipo Voronoi. Inoltre, i collegamenti fra i nodi della struttura reticolare sono stati alterati in modo da includere configurazioni non rettilinee (o tortuose). Tramite un’analisi parametrica, effettuata mediante analisi agli elementi finiti, si è valutato numericamente il comportamento lineare-elastico di strutture soggette a compressione quasi-statica, collegando opportunamente le variabili di design con le proprietà meccaniche delle strutture. I risultati numerici, basati sulla valutazione del modulo elastico e del coefficiente di Poisson, indicano che, a parità di frazione volumetrica, l’aumento del grado di disordine strutturale provoca una diminuzione del modulo elastico e un aumento del coefficiente di Poisson, entrambi con un andamento lineare. La tesi include anche la validazione sperimentale di un sottoinsieme delle strutture analizzate numericamente. Tali strutture sono state stampate in 3D utilizzando l’acido polilattico e la tecnologia di Fused Deposition Modeling e testate in condizioni di compressione quasi-statica. I risultati sperimentali ottenuti mostrano una buona correlazione con i risultati numerici, ma ulteriori approfondimenti sono necessari.
Computational design of disordered mechanical metamaterials
Marino, Tommaso
2023/2024
Abstract
In recent years, advancements in Additive Manufacturing technologies, combined with the increased versatility offered by Computer-Aided Design systems, have promoted the development and fabrication of the so-called metamaterials. These are defined as structures designed to exhibit physical properties that can surpass those of conventional materials and whose behavior is derived from their unique topology. In such a context, this thesis aims to design and analyze the linear-elastic properties of 2.5D thin-walled structures with an apparently disordered configuration. It has been observed that certain structures found in nature, which possess superior mechanical properties, exhibit a heterogeneous topology in which structural disorder appears to be dominant. Building on this foundation, digital and 3D-printed structures were created, implementing a parametric design approach. Specifically, through the use of dimensionless variables, structural disorder was introduced and adjusted on a Voronoi tessellation. Additionally, the connections between nodes of the reticular structure have been altered to include non-straight (tortuous) configurations. Through a parametric study conducted using finite element analyses, the linear-elastic behavior of structures subjected to quasi-static compression was numerically evaluated, effectively linking the design space to the property space. The numerical results, based on the evaluation of the elastic modulus and Poisson’s ratio, indicate that, for given values of volume fractions, an increase in the degree of structural disorder causes a decrease in the elastic modulus and an increase in Poisson’s ratio, both exhibiting a linear trend. This thesis also includes the experimental validation of a subset of the numerically analyzed structures. They have been 3D-printed using the Polylactic Acid material and the Fused Deposition Modeling technology and tested under quasi-static compression conditions. The experimental results show good agreement with the numerical ones but further investigations are needed.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Marino_Tesi.pdf
non accessibile
Descrizione: Testo Tesi
Dimensione
47.58 MB
Formato
Adobe PDF
|
47.58 MB | Adobe PDF | Visualizza/Apri |
2024_12_Marino_Executive_Summary.pdf
non accessibile
Descrizione: Testo Executive Summary
Dimensione
7.91 MB
Formato
Adobe PDF
|
7.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231342