This thesis explores the technological development of floating offshore wind farms as an advanced solution for renewable energy production. In particular, it examines the poten- tial of these installations within the framework of Italy’s ecological transition, considering the challenges and opportunities presented by the Mediterranean marine context. The thesis details a comparison between fixed and floating offshore wind technologies, high- lighting the importance of seabed depths and Italian environmental conditions, where floating technology is the only viable option due to the steep depth gradient near the coast. A theoretical offshore installation model with a total capacity of 500 MW, located approximately 50 km from the coast at a depth of 300 meters, is proposed. Based on this hypothesis, the thesis explores innovative structural configurations for floating plat- forms, the use of transformers and compensating reactors for power stabilization, and high-voltage transmission, with a particular focus on the dynamic cables required for energy transmission. Simulations using specialized software, such as DigSilent PowerFac- tory, were conducted to optimize reactive power compensation and assess the effectiveness of the proposed methods. Basing on these considerations, a possible floating substation structure is presented, including power equipment and auxiliary services. In the end, future development scenarios are analyzed, with a particular focus on emerging technolo- gies such as offshore meshed grids and HTS superconducting transformers, which could significantly enhance the efficiency and sustainability of such installations.

Il presente lavoro di tesi esplora lo sviluppo tecnologico degli impianti eolici offshore flot- tanti come una soluzione avanzata per la produzione di energia rinnovabile. In particolare, viene analizzato il potenziale di questi impianti nell’ambito della transizione ecologica ital- iana, considerando le sfide e le opportunità offerte dal contesto marino del Mediterraneo. La tesi descrive dettagliatamente il confronto tra tecnologie eoliche offshore fissate e gal- leggianti, sottolineando l’importanza delle profondità dei fondali marini e delle condizioni ambientali italiane, dove la tecnologia galleggiante risulta essere l’unica praticabile a causa delle profondità elevate a breve distanza dalla costa. Viene quindi proposto un modello teorico di impianto offshore con una potenza complessiva di 500 MW, situato a circa 50 km dalla costa e a una profondità di 300 metri. A partire da questa ipotesi, la tesi esplora configurazioni strutturali innovative per le piattaforme galleggianti, l’utilizzo di trasfor- matori e reattori compensatori per la stabilizzazione della potenza e la trasmissione in alta tensione, con un focus particolare sui cavi dinamici necessari per il trasporto dell’energia. Simulazioni tramite software specializzati, come DigSilent PowerFactory, sono state ef- fettuate per ottimizzare la compensazione della potenza reattiva, valutando l’efficacia dei metodi proposti. Sulla base di queste considerazioni, viene presentata una possibile strut- tura di una sottostazione flottante, compresa di macchinari elettrici di potenza e servizi ausiliari. Infine, vengono analizzati scenari di sviluppo futuri, con particolare attenzione a tecnologie emergenti come le reti magliate offshore e i trasformatori HTS a supercon- duttori, che potrebbero migliorare significativamente l’efficienza e la sostenibilità di tali impianti.

Development and analysis of floating offshore wind farms: a sustainable layout for floating electric substations

Balestri, Giovanni;Trapasso, Roberto
2023/2024

Abstract

This thesis explores the technological development of floating offshore wind farms as an advanced solution for renewable energy production. In particular, it examines the poten- tial of these installations within the framework of Italy’s ecological transition, considering the challenges and opportunities presented by the Mediterranean marine context. The thesis details a comparison between fixed and floating offshore wind technologies, high- lighting the importance of seabed depths and Italian environmental conditions, where floating technology is the only viable option due to the steep depth gradient near the coast. A theoretical offshore installation model with a total capacity of 500 MW, located approximately 50 km from the coast at a depth of 300 meters, is proposed. Based on this hypothesis, the thesis explores innovative structural configurations for floating plat- forms, the use of transformers and compensating reactors for power stabilization, and high-voltage transmission, with a particular focus on the dynamic cables required for energy transmission. Simulations using specialized software, such as DigSilent PowerFac- tory, were conducted to optimize reactive power compensation and assess the effectiveness of the proposed methods. Basing on these considerations, a possible floating substation structure is presented, including power equipment and auxiliary services. In the end, future development scenarios are analyzed, with a particular focus on emerging technolo- gies such as offshore meshed grids and HTS superconducting transformers, which could significantly enhance the efficiency and sustainability of such installations.
BUTTAU, GIANCARLO
PETRINI, MASSIMO
ING - Scuola di Ingegneria Industriale e dell'Informazione
11-dic-2024
2023/2024
Il presente lavoro di tesi esplora lo sviluppo tecnologico degli impianti eolici offshore flot- tanti come una soluzione avanzata per la produzione di energia rinnovabile. In particolare, viene analizzato il potenziale di questi impianti nell’ambito della transizione ecologica ital- iana, considerando le sfide e le opportunità offerte dal contesto marino del Mediterraneo. La tesi descrive dettagliatamente il confronto tra tecnologie eoliche offshore fissate e gal- leggianti, sottolineando l’importanza delle profondità dei fondali marini e delle condizioni ambientali italiane, dove la tecnologia galleggiante risulta essere l’unica praticabile a causa delle profondità elevate a breve distanza dalla costa. Viene quindi proposto un modello teorico di impianto offshore con una potenza complessiva di 500 MW, situato a circa 50 km dalla costa e a una profondità di 300 metri. A partire da questa ipotesi, la tesi esplora configurazioni strutturali innovative per le piattaforme galleggianti, l’utilizzo di trasfor- matori e reattori compensatori per la stabilizzazione della potenza e la trasmissione in alta tensione, con un focus particolare sui cavi dinamici necessari per il trasporto dell’energia. Simulazioni tramite software specializzati, come DigSilent PowerFactory, sono state ef- fettuate per ottimizzare la compensazione della potenza reattiva, valutando l’efficacia dei metodi proposti. Sulla base di queste considerazioni, viene presentata una possibile strut- tura di una sottostazione flottante, compresa di macchinari elettrici di potenza e servizi ausiliari. Infine, vengono analizzati scenari di sviluppo futuri, con particolare attenzione a tecnologie emergenti come le reti magliate offshore e i trasformatori HTS a supercon- duttori, che potrebbero migliorare significativamente l’efficienza e la sostenibilità di tali impianti.
File allegati
File Dimensione Formato  
Balestri_Trapasso_Master_Thesis.pdf

non accessibile

Dimensione 13.73 MB
Formato Adobe PDF
13.73 MB Adobe PDF   Visualizza/Apri
Balestri_Trapasso_executive_summary.pdf

non accessibile

Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/231351