This thesis explores the transformative potential of generative AI within organizational frameworks, emphasizing its capacity to enhance productivity, creativity, and decision-making across various functions. Generative AI tools facilitate rapid data analysis, enabling organizations in sectors such as finance and healthcare to derive insights from large datasets efficiently. In customer service, AI-powered chatbots streamline inquiries, providing instant responses and allowing human agents to focus on complex issues. The technology also accelerates design and prototyping processes by generating prototypes based on specified parameters, thereby fostering innovation. Furthermore, generative AI personalizes user experiences by analyzing behavior and preferences, significantly enhancing marketing strategies. The increasing integration of generative AI into daily operations reflects rising expectations for its role in business processes, driven by demands for improved efficiency and cost reduction. Organizations face pressure to innovate in a rapidly evolving market, and generative AI offers solutions that automate tasks and optimize workflows. This research investigates existing adoption frameworks, challenges, and driving factors for generative AI integration, particularly through hyper-agile methodologies and citizen development. A structured methodology for adopting generative AI is proposed, detailing phases from initiation to democratization, with a focus on aligning with organizational goals and engaging employees. Case studies, particularly the implementation of generative AI at Tecnimont, illustrate practical applications and outcomes. The findings underscore the necessity of embracing generative AI as a strategic imperative for organizations aiming to thrive in today’s dynamic environment. The thesis concludes with reflections on future research directions, addressing limitations and proposing frameworks for effective integration into business processes. Overall, this work highlights the critical role of generative AI in reshaping business operations, driving efficiency, and enabling organizations to respond swiftly to market changes, thereby positioning them for sustainable growth and competitive advantage.
Questa tesi esplora il potenziale trasformativo dell’intelligenza artificiale generativa all’interno delle strutture organizzative, enfatizzando la sua capacità di migliorare la produttività, la creatività e il processo decisionale in diverse funzioni. Gli strumenti di intelligenza artificiale generativa facilitano un’analisi rapida dei dati, consentendo alle organizzazioni nei settori della finanza e della sanità di ottenere informazioni da grandi dataset in modo efficiente. Nel servizio clienti, i chatbot alimentati da intelligenza artificiale semplificano le richieste, fornendo risposte immediate e permettendo agli agenti umani di concentrarsi su questioni più complesse. La tecnologia accelera anche i processi di design e prototipazione generando prototipi basati su parametri specificati, promuovendo così l’innovazione. Inoltre, l’intelligenza artificiale generativa personalizza le esperienze degli utenti analizzando comportamenti e preferenze, migliorando significativamente le strategie di marketing. L’integrazione crescente dell’intelligenza artificiale generativa nelle operazioni quotidiane riflette le aspettative in aumento riguardo al suo ruolo nei processi aziendali, spinta dalla domanda di maggiore efficienza e riduzione dei costi. Le organizzazioni affrontano pressioni per innovare in un mercato in rapida evoluzione, e l’intelligenza artificiale generativa offre soluzioni che automatizzano compiti e ottimizzano flussi di lavoro. Questa ricerca indaga i framework di adozione esistenti, le sfide e i fattori trainanti per l’integrazione dell’intelligenza artificiale generativa, in particolare attraverso metodologie hyper-agile e sviluppo da parte dei cittadini. Viene proposta una metodologia strutturata per l’adozione dell’intelligenza artificiale generativa, dettagliando le fasi dall’inizio alla democratizzazione, con un focus sull’allineamento agli obiettivi organizzativi e sul coinvolgimento dei dipendenti. I casi studio, in particolare l’implementazione dell’intelligenza artificiale generativa presso Tecnimont, illustrano applicazioni pratiche e risultati. I risultati sottolineano la necessità di abbracciare l’intelligenza artificiale generativa come un imperativo strategico per le organizzazioni che mirano a prosperare nell’ambiente dinamico odierno. La tesi si conclude con riflessioni sulle direzioni future della ricerca, affrontando le limitazioni e proponendo framework per un’integrazione efficace nei processi aziendali. Complessivamente, questo lavoro evidenzia il ruolo cruciale dell’intelligenza artificiale generativa nel rimodellare le operazioni aziendali, guidando l’efficienza e consentendo alle organizzazioni di rispondere rapidamente ai cambiamenti del mercato, posizionandole così per una crescita sostenibile e un vantaggio competitivo
Generative AI adoption: strategies for effective implementation
Narayanasamy Ramasamy Srinivasan, Pradeep
2024/2025
Abstract
This thesis explores the transformative potential of generative AI within organizational frameworks, emphasizing its capacity to enhance productivity, creativity, and decision-making across various functions. Generative AI tools facilitate rapid data analysis, enabling organizations in sectors such as finance and healthcare to derive insights from large datasets efficiently. In customer service, AI-powered chatbots streamline inquiries, providing instant responses and allowing human agents to focus on complex issues. The technology also accelerates design and prototyping processes by generating prototypes based on specified parameters, thereby fostering innovation. Furthermore, generative AI personalizes user experiences by analyzing behavior and preferences, significantly enhancing marketing strategies. The increasing integration of generative AI into daily operations reflects rising expectations for its role in business processes, driven by demands for improved efficiency and cost reduction. Organizations face pressure to innovate in a rapidly evolving market, and generative AI offers solutions that automate tasks and optimize workflows. This research investigates existing adoption frameworks, challenges, and driving factors for generative AI integration, particularly through hyper-agile methodologies and citizen development. A structured methodology for adopting generative AI is proposed, detailing phases from initiation to democratization, with a focus on aligning with organizational goals and engaging employees. Case studies, particularly the implementation of generative AI at Tecnimont, illustrate practical applications and outcomes. The findings underscore the necessity of embracing generative AI as a strategic imperative for organizations aiming to thrive in today’s dynamic environment. The thesis concludes with reflections on future research directions, addressing limitations and proposing frameworks for effective integration into business processes. Overall, this work highlights the critical role of generative AI in reshaping business operations, driving efficiency, and enabling organizations to respond swiftly to market changes, thereby positioning them for sustainable growth and competitive advantage.File | Dimensione | Formato | |
---|---|---|---|
2024_12_NarayanasamyRamasamySrinivasan.pdf
solo utenti autorizzati a partire dal 20/11/2025
Descrizione: Implementation of the Generative AI Inside the organization
Dimensione
3.91 MB
Formato
Adobe PDF
|
3.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231358