Improving catalyst activity for ammonia decomposition is crucial for energy-efficient, carbon-free hydrogen production from NH3, as one major challenge limiting technology implementation is the high energy demand at reaction conditions. A potential solution involves exploiting the reaction's structure sensitivity to design more effective catalysts. It is reported that Ru-based catalysts for ammonia decomposition exhibit structure sensitivity, as the reactivity changes with size and shape of the active phase. However, there is not a coherent explanation of such changes in catalytic activity experimentally observed. To this aim, an ensemble approach is adopted to model the effect of morphology of metastable particles under reaction conditions, compared to single, thermodynamically stable nanoparticles. DFT calculations were performed to compute the reaction path of the elementary steps over two different surfaces, Ru(0001) and Ru(10-10)-A. The structure sensitivity of the reaction was confirmed in terms of different apparent activation free energies of the kinetically relevant step. Theoretical calculations are then adopted to model an ensemble of metastable nanoparticles characterized by hexagonal-shaped particles as the most energetically stable structures, as confirmed by Boltzmann statistics. The fractions of active sites were categorized by type (hcp, fcc, B5, A5) and position relative to the surface (edge, terrace, corner). However, their active sites distribution suggested an opposite trend for the turnover frequency as compared to experiments due to a reverse tendency in the fraction of B5 sites, assumed to be the most active site. To elucidate the origin of this conflicting trend, “flat” particles, a subgroup of higher energy particles already present in the ensemble, were analyzed independently and showed a B5 fraction increasing with particle size, confirming experimental trends. The application of the nanoparticle ensemble approach thus makes it possible to quantitatively describe the shape of the particles in various conditions and its effect on the activity when coupled with ab-initio thermodynamic calculations.
Migliorare l’attività dei catalizzatori per la decomposizione di ammoniaca è cruciale per un’efficiente produzione di idrogeno carbon-free da NH3, visto che l’elevata richiesta di energia nelle condizioni di reazione è uno degli ostacoli maggiori per l’implementazione di questa tecnologia. Una possibile soluzione ricade nell’analisi struttura dipendente della reazione per il design di catalizzatori più attivi. Viene riportato che i catalizzatori a base di Ru per la decomposizione di ammoniaca siano affetti da sensitività strutturale, visti i cambiamenti in attività dovuti alla struttura delle particelle. Eppure, manca una spiegazione coerente per le variazioni osservate in attività catalitica. Dunque, un approccio di ensemble è applicato per modellare gli effetti di strutture di particelle sia stabili che metastabili in condizioni di reazione. Calcoli DFT sono stati effettuati per studiare il MEP della reazione su due superfici, Ru(0001) e Ru(10-10)-A. Il processo risulta essere struttura dipendente viste le differenti energie libere apparenti di attivazione degli step cineticamente rilevanti nelle due superfici. Queste simulazioni sono state adottate per modellare un ensemble di particelle metastabili caratterizzato da particelle di forma esagonale come particelle più stabili, come stabilito dalla statistica di Boltzmann. Le frazioni di siti attivi sono state poi classificate per tipo (hcp, fcc, B5 A5) e posizione relativa alla superficie (terrace, edge, corner). Tuttavia, la distribuzione dei siti attivi suggerisce un trend opposto a quello sperimentale per turnover frequency a causa di un andamento inverso della frazione dei siti B5 , considerati come i siti più attivi. Per chiarire l’origine di questa discrepanza, sono state analizzate indipendentemente delle particelle “piatte”, un sottogruppo di particelle a più alta energia già presente nell’ensemble. I risultati mostrano una frazione di B5 crescente con le dimensioni delle particelle, confermando l’evidenza sperimentale. Dunque, lo studio di un ensemble di particelle permette di descrivere quantitativamente la forma delle particelle e i loro effetti sull’attività quando combinato con calcoli ab-initio.
Fundamental analysis of the nature and origin of the structure sensitivity of ammonia decomposition on ruthenium catalysts
Cozzi, Andrea
2023/2024
Abstract
Improving catalyst activity for ammonia decomposition is crucial for energy-efficient, carbon-free hydrogen production from NH3, as one major challenge limiting technology implementation is the high energy demand at reaction conditions. A potential solution involves exploiting the reaction's structure sensitivity to design more effective catalysts. It is reported that Ru-based catalysts for ammonia decomposition exhibit structure sensitivity, as the reactivity changes with size and shape of the active phase. However, there is not a coherent explanation of such changes in catalytic activity experimentally observed. To this aim, an ensemble approach is adopted to model the effect of morphology of metastable particles under reaction conditions, compared to single, thermodynamically stable nanoparticles. DFT calculations were performed to compute the reaction path of the elementary steps over two different surfaces, Ru(0001) and Ru(10-10)-A. The structure sensitivity of the reaction was confirmed in terms of different apparent activation free energies of the kinetically relevant step. Theoretical calculations are then adopted to model an ensemble of metastable nanoparticles characterized by hexagonal-shaped particles as the most energetically stable structures, as confirmed by Boltzmann statistics. The fractions of active sites were categorized by type (hcp, fcc, B5, A5) and position relative to the surface (edge, terrace, corner). However, their active sites distribution suggested an opposite trend for the turnover frequency as compared to experiments due to a reverse tendency in the fraction of B5 sites, assumed to be the most active site. To elucidate the origin of this conflicting trend, “flat” particles, a subgroup of higher energy particles already present in the ensemble, were analyzed independently and showed a B5 fraction increasing with particle size, confirming experimental trends. The application of the nanoparticle ensemble approach thus makes it possible to quantitatively describe the shape of the particles in various conditions and its effect on the activity when coupled with ab-initio thermodynamic calculations.File | Dimensione | Formato | |
---|---|---|---|
2024_12_Cozzi_Tesi.pdf
non accessibile
Dimensione
3.03 MB
Formato
Adobe PDF
|
3.03 MB | Adobe PDF | Visualizza/Apri |
2024_12_Cozzi_Executive_Summary.pdf
non accessibile
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/231370