We present an alternative proof for the existence and multiplicity of normalized solutions of mountain pass and local minimizer type to the nonlinear Schrödinger equation with combined power nonlinearities in RN. Our analysis focuses on the case of masssupercritical and Sobolev subcritical leading exponent with mass-subcritical focusing perturbation for N ≥ 2, a scenario previously addressed in [35]. To tackle this problem, we adopt a variational framework, looking for constrained critical points of the energy functional associated to the equation. Since this functional is not bounded from below, we employ a minimax approach. By combining the mountain pass theorem with the Struwe monotonicity trick, we derive bounded Palais-Smale sequences constrained to the mass manifold. These sequences are shown to exist for almost every mass under a specific critical threshold. We initially focus on a class of approximating problems defined on open balls centered at the origin with varying radii R. We demonstrate that these approximating problems exhibit similar properties to the global one. Specifically, for any given mass, they preserve the same mountain pass geometry as the original problem, provided the radius R is large enough (depending on the prescribed mass of the solution). Thanks to compactness properties, we show that these approximating problems admit radial positive solutions. Furthermore, leveraging the Pohozaev identity on bounded domains, we derive a uniform bound for the norm of these solutions that is independent of R. This result, in conjunction with additional information on the Lagrange multipliers, enables us to establish the existence of a solution for every mass for which the mountain pass geometry holds. Finally, we pass to the limit and we observe that, for a fixed mass and as R tends to infinity, the solutions on bounded domains form a relatively compact Palais-Smale sequence for the global problem. We are able to prove that the strong limit of an appropriate subsequence yields us the two desired solutions.

Presentiamo una dimostrazione alternativa per l’esistenza e la molteplicità di soluzioni normalizzate di tipo passo montano e minimo locale per l’equazione di Schrödinger nonlineare con nonlinearità combinate di tipo potenza in RN. La nostra analisi si concentra sul caso di nonlinearità con esponente principale L2-supercritico e Sobolev subcritico con perturbazione focalizzante di tipo L2-subcritico per N ≥ 2, uno scenario precedentemente affrontato in [35]. Per affrontare questo problema, adottiamo un quadro variazionale, cercando punti critici vincolati del funzionale energia associato all’equazione. Poiché questo funzionale non è limitato inferiormente, utilizziamo un approccio minimax. Combinando il teorema del passo montano con il trucco di monotonia di Struwe, otteniamo successioni di Palais-Smale vincolate alla varietà di massa. Mostriamo che queste successioni esistono per quasi ogni massa al di sotto di una specifica soglia critica. Ci concentriamo inizialmente su una classe di problemi approssimanti definiti su palle aperte centrate nell’origine con raggio variabile R. Dimostriamo che questi problemi approssimanti presentano proprietà simili a quelle del problema globale. In particolare, per una massa fissata, conservano la stessa geometria di passo montano del problema originale, a condizione che il raggio R sia sufficientemente grande (dipendente dalla massa prescritta della soluzione). Grazie a proprietà di compattezza, mostriamo che questi problemi ammettono soluzioni radiali e positive. Inoltre, sfruttando l’identità di Pohozaev su domini limitati, deriviamo un limite uniforme per la norma delle soluzioni indipendente da R. Questo risultato, insieme a informazioni aggiuntive sui moltiplicatori di Lagrange, ci consente di stabilire l’esistenza di una soluzione per ogni massa per cui vale la geometria di passo montano. Infine, passiamo al limite e osserviamo che, per una massa fissata e R tendente all’infinito, le soluzioni sui domini limitati formano una successione Palais-Smale per il problema globale. Siamo in grado di dimostrare che una sottosuccessione converge nel senso forte alle due soluzioni desiderate.

Variational methods for normalized solutions of nonlinear Schrödinger equations

De Gaspari, Lorenzo
2023/2024

Abstract

We present an alternative proof for the existence and multiplicity of normalized solutions of mountain pass and local minimizer type to the nonlinear Schrödinger equation with combined power nonlinearities in RN. Our analysis focuses on the case of masssupercritical and Sobolev subcritical leading exponent with mass-subcritical focusing perturbation for N ≥ 2, a scenario previously addressed in [35]. To tackle this problem, we adopt a variational framework, looking for constrained critical points of the energy functional associated to the equation. Since this functional is not bounded from below, we employ a minimax approach. By combining the mountain pass theorem with the Struwe monotonicity trick, we derive bounded Palais-Smale sequences constrained to the mass manifold. These sequences are shown to exist for almost every mass under a specific critical threshold. We initially focus on a class of approximating problems defined on open balls centered at the origin with varying radii R. We demonstrate that these approximating problems exhibit similar properties to the global one. Specifically, for any given mass, they preserve the same mountain pass geometry as the original problem, provided the radius R is large enough (depending on the prescribed mass of the solution). Thanks to compactness properties, we show that these approximating problems admit radial positive solutions. Furthermore, leveraging the Pohozaev identity on bounded domains, we derive a uniform bound for the norm of these solutions that is independent of R. This result, in conjunction with additional information on the Lagrange multipliers, enables us to establish the existence of a solution for every mass for which the mountain pass geometry holds. Finally, we pass to the limit and we observe that, for a fixed mass and as R tends to infinity, the solutions on bounded domains form a relatively compact Palais-Smale sequence for the global problem. We are able to prove that the strong limit of an appropriate subsequence yields us the two desired solutions.
ING - Scuola di Ingegneria Industriale e dell'Informazione
11-dic-2024
2023/2024
Presentiamo una dimostrazione alternativa per l’esistenza e la molteplicità di soluzioni normalizzate di tipo passo montano e minimo locale per l’equazione di Schrödinger nonlineare con nonlinearità combinate di tipo potenza in RN. La nostra analisi si concentra sul caso di nonlinearità con esponente principale L2-supercritico e Sobolev subcritico con perturbazione focalizzante di tipo L2-subcritico per N ≥ 2, uno scenario precedentemente affrontato in [35]. Per affrontare questo problema, adottiamo un quadro variazionale, cercando punti critici vincolati del funzionale energia associato all’equazione. Poiché questo funzionale non è limitato inferiormente, utilizziamo un approccio minimax. Combinando il teorema del passo montano con il trucco di monotonia di Struwe, otteniamo successioni di Palais-Smale vincolate alla varietà di massa. Mostriamo che queste successioni esistono per quasi ogni massa al di sotto di una specifica soglia critica. Ci concentriamo inizialmente su una classe di problemi approssimanti definiti su palle aperte centrate nell’origine con raggio variabile R. Dimostriamo che questi problemi approssimanti presentano proprietà simili a quelle del problema globale. In particolare, per una massa fissata, conservano la stessa geometria di passo montano del problema originale, a condizione che il raggio R sia sufficientemente grande (dipendente dalla massa prescritta della soluzione). Grazie a proprietà di compattezza, mostriamo che questi problemi ammettono soluzioni radiali e positive. Inoltre, sfruttando l’identità di Pohozaev su domini limitati, deriviamo un limite uniforme per la norma delle soluzioni indipendente da R. Questo risultato, insieme a informazioni aggiuntive sui moltiplicatori di Lagrange, ci consente di stabilire l’esistenza di una soluzione per ogni massa per cui vale la geometria di passo montano. Infine, passiamo al limite e osserviamo che, per una massa fissata e R tendente all’infinito, le soluzioni sui domini limitati formano una successione Palais-Smale per il problema globale. Siamo in grado di dimostrare che una sottosuccessione converge nel senso forte alle due soluzioni desiderate.
File allegati
File Dimensione Formato  
2024_12_De_Gaspari_Executive_Summary.pdf

accessibile in internet per tutti

Descrizione: Executive Summary of the Thesis
Dimensione 453.77 kB
Formato Adobe PDF
453.77 kB Adobe PDF Visualizza/Apri
2024_12_De_Gaspari_Thesis.pdf

accessibile in internet per tutti

Descrizione: Full text of the Thesis
Dimensione 732.35 kB
Formato Adobe PDF
732.35 kB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/231410